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The visualization of an exceptional point in a PT -symmetric directional coupler (DC) is demonstrated.

In such a system the exceptional point can be probed by varying only a single parameter. Using the

Rayleigh-Schrödinger perturbation theory we prove that the spectrum of a PT -symmetric Hamiltonian

is real as long as the radius of convergence has not been reached. We also show how one can use a

PT -symmetric directional coupler to measure the radius of convergence for non-PT -symmetric

structures. For such systems the physical meaning of the rather mathematical term radius of convergence

is exemplified.
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In the past several years, following the seminal paper by
Bender and Boettcher [1], non-Hermitian PT -symmetric
Hamiltonians have caught a lot of attention (see [2] and
references therein). Under certain conditions PT -
symmetric Hamiltonians can have a completely real spec-
trum and thus can serve, under the appropriate inner prod-
ucts, as the Hamiltonians for unitary quantum systems [3].

Recently, a few suggestions of PT -symmetric
‘‘Hamiltonians’’ have been made using optical waveguides
with complex refractive indices or boundary terms [4–6].
The equivalence of the Maxwell and Schrödinger equa-
tions in certain regimes provides a physical system in
which the properties of PT -symmetric operators can be
studied and exemplified. Moreover, such realizations can
be very useful in connecting general mathematical con-
cepts with observable physical measurements. As will be
seen below, in the realization of a PT -symmetric system
one such clarifiable concept is the radius of convergence of
a perturbation expansion.

An extremely interesting property of PT -symmetric
operators is the transition from a completely real spectrum
into a nonstrictly real spectrum. This property has come to
be known as exact/spontaneously-broken PT symmetry.
Exact PT symmetry refers to the case where the entire
spectrum is real. In any other case the PT symmetry is
said to be broken. Usually, the transition between exact and
spontaneously broken PT symmetry can be controlled by
a parameter in the Hamiltonian. This parameter serves as a
measure of the non-Hermiticity.

Bender et al. [7] showed that the reality of the spectrum
is explained by the real secular equations one can write for
PT -symmetric matrices. These secular equations will
depend on the non-Hermiticity parameter and, conse-
quently, yield either real or complex solutions. Delabaere
et al. [8] showed for the one-parameter family of complex
cubic oscillators that pairs of eigenvalues cross each other
at Bender and Wu branch points. Dorey et al. [9], after

proving the reality of the spectrum for a family of
PT -symmetric Hamiltonians, showed [10] that at the
point where the energy levels cross, a supersymmetry is
broken and not only the eigenvalues but also the eigen-
functions become the same.
An important class of PT -symmetric Hamiltonians are

of the form Ĥð�Þ ¼ H0 þ i�V, where H0 (and V) are real
and symmetric (antisymmetric) with respect to parity so

that ½PT ; Ĥ� ¼ 0. When � ¼ 0 the Hamiltonian is
Hermitian and the entire spectrum is real. The spectrum
remains real even when � � 0 as long as � < �c. At this
critical value and beyond, pairs of eigenvalues collide and
become complex; see for example [11]. Although the
above-mentioned proofs can be applied also for this special
class ofPT -symmetric Hamiltonians, a much more physi-
cally oriented proof can be given. Such a proof, see below,
is not only reachable by a wider audience, relying solely on
a perturbational analysis of the Hamiltonian, but also
provides new insights into the physical system.

Consider the family of Hamiltonians given by Ĥ ¼
H0 þ �V ¼ H0 þ ij�jV. The existence of a branch point
in the Hamiltonian’s spectrum determines the radius of
convergence of a series expansion of the energy in �.
Friedland and one of us [12] proved that for two real
symmetric matrices H0 and V that do not commute there
exists at least one branch point �bp for which dE

d� j�¼�bp ¼
1. Therefore, the expansion of the energy in powers of �
converges only as long as j�j< j�bpj. The most common

situation is when the branch point is associated with the
coalescence of two eigenfunctions and the two correspond-
ing eigenvalues. Such a point in the spectrum is often
referred to as an exceptional point [13]. Exceptional points
in physical systems have been studied, e.g., in [14,15].
Recently, exceptional points have been observed experi-
mentally in microwave cavities [16]. In general, as stated
in the theorem above, the value of the parameter � at which
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the branch point occurs is a complex number. This de-
mands the control of the Hamiltonian by at least two
parameters [15]. From the evidence of branch points in
previous studies of PT -symmetric Hamiltonians, e.g.,
[11], it is plausible to assume that the branch point is
located on the imaginary axis, i.e., �bp ¼ ij�bpj. Hence,
the two parameter dependence reduces to a dependence on
a single real parameter. Therefore, the study of exceptional
points in PT -symmetric systems is strongly simplified.

The relation between the reality of the spectrum and the
branch point at �bp can be seen from a Rayleigh-

Schrödinger perturbation analysis. Consider the following
time-independent Schrödinger equation:

ðH0 þ �VÞ�jð�Þ ¼ Ejð�Þ�jð�Þ; (1)

where again, H0 (and V) are real and symmetric (antisym-
metric) with respect to parity and are both Hermitian
operators. Assuming that j�j< j�bpj, one can expand the

eigenvalues and eigenfunctions in a convergent power

series in powers of �: Ejðj�j< j�bpjÞ ¼ P1
n¼0 �

nEðnÞ
j and

�jðj�j< j�bpjÞ ¼
P1
n¼0 �

n�ðnÞ
j , where EðnÞ

j ð�ðnÞ
j Þ; n ¼

0; 1; 2 . . . are the real energy (wavefunction) correction
terms of the Rayleigh-Schrödinger perturbation expansion.
The ð2nþ 1Þ-rule stated by Wigner [17] implies that

Ej ¼ h�ðnÞ
j jH0 þ �Vj�ðnÞ

j i þOð�2nþ2Þ (2)

where �ðnÞ
j ðxÞ ¼ P

n
k¼0 �

k ðkÞ
j and h�ðnÞ

j j�ðnÞ
j i ¼ 1. There-

fore, following the ð2nþ 1Þ-rule,

Eð2nþ1Þ
j ¼ h ðnÞ

j jVj ðnÞ
j i (3)

where the nth order correction to the exact eigenfunction
�j is the solution of the following equation:

 ðnÞ
j ðxÞ ¼ G0

0ðEð0Þ
j ÞVðxÞj ðn�1Þ

j i

� Xn�1

k¼1

EðkÞ
j G

0
0ðEð0Þ

j Þj ðn�kÞ
j i; (4)

andG0
0ðEð0Þ

j Þ ¼ P
q�jhxj ð0Þ

q ih ð0Þ
q jðEð0Þ

j � Eð0Þ
q Þ�1. The par-

ity symmetry of the zeroth-order Hamiltonian ensures that

its eigenfunction  ð0Þ
q ðxÞ has either even or odd parity. That

is,  ðnÞ
j ðxÞ ¼ ð�1Þjþn�1 ðnÞ

j ð�xÞ for j ¼ 1; 2; . . . and n ¼
0; 1; . . . . One can now immediately conclude that

Eð2nþ1Þ
j ¼ 0: (5)

Therefore, Ejðj�j< j�bpjÞ ¼
P1
n¼0 �

2nEð2nÞ
j , and, conse-

quently, for � ¼ ij�j the series Ejðj�j< j�bpjÞ ¼
P1
n¼0ð�1Þnj�j2nEð2nÞ

j converges to real values.

The above analysis shows that the transition between
exact and spontaneously broken PT symmetry occurs at a
branch point where the non-Hermiticity parameter (j�j in
our case) reaches the radius of convergence of the pertur-
bation expansion. As we will show below this phenomenon
can be observed experimentally.
The measurement of the radius of convergence of a

Rayleigh-Schrödinger series expansion will be demon-
strated in a PT -symmetric waveguide configuration. A
PT -symmetric waveguide can be easily realized with a
symmetric index guiding profile and an antisymmetric
gain-loss profile, i.e., nðxÞ ¼ n�ð�xÞ [5]. We consider
two coupled planar waveguides depicted in Fig. 1 for
which the refractive index varies only in the x direction.
The direction of propagation in the waveguides is taken to
be the z axis. The wave equation for the transverse-electric
modes then reads

�
@2

@x2
þ k2nðxÞ2

�
EyðxÞ ¼ �2EyðxÞ; (6)

where the y component of the electric field is given by

Eyðx; z; tÞ ¼ EyðxÞeið!t��zÞ, k ¼ 2�=�, and � is the vac-

uum wavelength. Clearly, the wave equation for the y
component of the electric field, i.e., Eq. (6), is analogous

to the one-dimensional Schrödinger equation: ½� 1
2
@2

@x2
þ

VðxÞ��ðxÞ ¼ E�ðxÞ, identifying the potential as VðxÞ ¼
� 1

2 k
2n2 and the energy as: E ¼ � 1

2�
2. As shown in Fig. 1

we couple between one gain-guiding waveguide (positive
imaginary part of the refractive index) and one loss-
guiding waveguide (negative imaginary part of the refrac-
tive index) [18] in order to create the PT -symmetric
structure. For simplicity we take the separation between
the two coupled waveguides to be the same as the wave-
guides’ width, i.e., 2a. Note that unlike in many
PT -symmetric systems, in our case the imaginary part
of the refractive index, i.e., the complex part of the poten-
tial, vanishes at x! �1. Therefore, one can impose the
boundary conditions on the real axis, i.e., EyðxÞ ! 0 as

FIG. 1 (color online). A PT -symmetric directional coupler.
The structure consists of two coupled slab waveguides. The real
and imaginary part of the refractive index is also portrayed. The
refractive index only varies in the x direction.
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x! �1. The effect of changing the separation of two
coupled PT -symmetric waveguides was studied in [5],
and showed that as in regular (non-PT -symmetric) direc-
tional couplers the coupling length is an increasing mono-
tonic function of the separation. The beat time period
usually used to describe quantum beating systems, e.g.,
[19], is exchanged in the study of waveguides by a beat
length L ¼ 2�=��, where �� is the difference between
the propagation constants of the two modes. As described
below a different method of controlling the beat length is
by changing the non-Hermiticity of the potential which can
be controlled by the gain (loss) coefficient ��. In order to
illustrate the control of the beat length using the non-
Hermiticity parameter we choose the following parameters
for the waveguide structure shown in Fig. 1: The back-
ground index is taken to be n0 ¼ 3:3, the vacuum wave-
length � ¼ 1:55 �m, the real index difference between the
waveguides and the background material �n ¼ 10�3, and
the separation between the waveguides which equals the
waveguides’ width 2a ¼ 5 �m. The parameters are
chosen such that each waveguide contains only a single
guided mode before we couple them. The coupled guided
modes are calculated by diagonalizing the matrix repre-
sentation of Eq. (6) in a sine basis. The ‘‘Hamiltonian’’
matrix is non-Hermitian and one needs to take care when
normalizing the eigenvectors. We choose to normalize our
eigenvectors according to the so-called c product [20], i.e.,
ðEnjEmÞ ¼ hE�

njEmi ¼ �n;m. The coupled waveguides sup-

port two guided modes. The propagation constants of the
two modes are plotted in Fig. 2 as a function of the non-
Hermiticity parameter. Increasing �� causes the propaga-
tion constants of the two modes to move towards each
other up to a critical point, i.e., the branch point. Beyond
the branch point the propagation constants become com-
plex conjugates of one another. As long as PT symmetry
remains exact, i.e., ��< ��c ’ 8:4, the two guided
modes can be classified according to the parity of the
real part of the transverse electric field just as in the
non-PT -symmetric case. The critical value of �� corre-
sponds to a branch point, i.e., an exceptional point, where
the two modes coalesce. At the branch point both the
propagation constants and the corresponding electric field
become equal. One can, therefore, study the exceptional
point in a PT -symmetric wave-guide by varying only a
single parameter. Past the critical value of ��, the wave-
guides support one gain-guiding mode and one loss-
guiding mode. The transverse field past the branch point
no longer retains the symmetry properties of the PT
operator, but rather each of the two modes becomes local-
ized in one of the waveguides. The progression of the
propagation constants on the real axis towards the branch
point can be visualized experimentally by observing the
beat length (time, in the corresponding quantum mechani-
cal problem) of the sum field for the PT -symmetric
waveguide. Figure 3 displays the power distribution,

jEyðx; zÞj2 ¼ j 1ffiffi
2

p ½E1ðxÞe�i�1z þ E2ðxÞe�i�2z�j2; (7)

for three values of ��. As the value of �� approaches the
critical value the beat length increases. This is a direct
observation of the movement of the propagation constants
towards each other on the real axis. Near the critical value
of ��, i.e., the exceptional point, the sum field no longer
oscillates between the waveguides but rather travels in both
waveguides simultaneously. Therefore, by tuning the value
of �� one can visualize the movement of the eigenmodes
towards the branch point or away from it, as seen in Fig. 3.
The effect of the non-Hermiticity on the beat length is
clearly reflected in Fig. 3 where the beat length goes to
infinity as the branch point is approached. However, this
visualization of the branch point is not the only information
one can get from such an experiment. By finding what is
the critical value of �� which corresponds to the branch
point one can infer the radius of convergence for any
symmetric waveguide structure with an antisymmetric
perturbation. Therefore, while the visualization is done
on a PT -symmetric waveguide, the critical value of ��
corresponds to the maximum value of an added antisym-
metric index profile which can still be treated within per-
turbation theory.
The PT -symmetric system proposed above also allows

a unique perspective on exceptional points. Usually, see,
for example, [16], in order to detect an exceptional point
one has to go around it in some parameter space. Such a
circulation around an exceptional point produces a geo-
metrical phase that can then be measured. In our case,
however, we are able to go directly through the exceptional
point by varying only a single parameter. This is not merely
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FIG. 2 (color online). The two trapped modes of the wave-
guide depicted in Fig. 1 as a function of the non-Hermiticity
parameter strength. The eigenmodes approach each other on the
real axis as �� increases until a critical value of ��c � 8:4 is
reached. At the critical value one finds a branch (exceptional)
point where the two modes coalesce. Beyond the branch point
the directional coupler sustains one gain-guiding mode and one
loss-guiding mode.
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a more direct method of detecting the exceptional point but
also opens the door to previously unobservable quantities.
One such quantity is the visualization of the self-
orthogonal state that in our suggested experiment can be
observed directly.

Although the studied waveguide is PT symmetric our
measuring devices still follow the regular properties of the
Hermitian ‘‘world.’’ Consequentially, although the propa-
gation constants of the modes of the waveguide are strictly
real the integrated intensity is not conserved, i.e., d

dz �R1
�1 jEyðx; zÞj2dx � 0. This can be easily seen from

Fig. 3, where for �� ¼ 8 cm�1 the intensity drops almost
to zero between oscillations. In terms of the new inner
product one can find a different conserved property instead
of the integrated intensity. In the case of PT -symmetric
waveguides one can find that the conserved property is
d
dz

R1
�1 E

�
yð�x; zÞEyðx; zÞdx ¼ 0. Yet another effect that

can be observed in the suggested experiment is that the
maximum intensity reached by the initially normalized
sum field increases as the branch point is approached.
This can be understood by observing that as one ap-
proaches the self-orthogonal state the overlap between
the two functions comprising the sum field increases.

We also note that the manifestation of PT symmetry
and its resulting properties is not (theoretically) restricted
to optical systems. To date, however, optical systems seem
to be the most readily applicable. One could easily envision
a setting using matter waves in which a condensate is
placed in a double well potential where in one well par-
ticles are injected into the condensate whereas in the
second well particles are removed from the condensate.
Here attention should be given to the nonlinearity of the
Gross-Pitaevskii equation. In order to keep the dynamics
similar to that described in the optics experiment the

nonlinearity should be made small. This can be achieved
either by tuning the interaction between the atoms to zero
or by using a very dilute sample. The experiment would
also require accurate and independent control over the
rates of particles injected or removed from the system.
Hopefully, experimental methods will improve to allow
such experiments to be done.
To conclude we wish to share the following analogy: the

experiment we propose enables the measurement of the
transition, through a branch point, from a real to a complex
spectrum of a quantum system which is reminiscent of a
transition through a bifurcation point from a stable to an
unstable periodic orbit in nonlinear classical systems.
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FIG. 3 (color online). The power distribution for a propagating
sum field consisting of the two guided modes, see Eq. (7), for
three values of ��. As can be readily observed, the beat length
(analogous to the beat time period in quantum mechanics)
increases as the value of �� approaches the critical value.
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