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Time-asymmetric quantum-state-exchange mechanism
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We show here that due to nonadiabatic couplings in decaying systems, applying the same time-dependent
protocol in the forward and reverse direction to the same mixed initial state leads to different final pure states.
In particular, in laser-driven molecular systems, applying a specifically chosen positively chirped laser pulse or
an equivalent negatively chirped laser pulse yields entirely different final vibrational states. This phenomenon
occurs when the laser frequency and intensity are slowly varied around an exceptional point (EP) in the laser
intensity and frequency parameter space where the non-Hermitian spectrum of the problem is degenerate. The
protocol implies that a positively chirped laser pulse traces a loop in time in the laser parameters’ space whereas
a negatively chirped pulse follows the same loop in the opposite direction. According to this protocol one can
choose the final pure state from any initial state. The obtained results imply the intrinsic nonadiabaticity of
quantum transport around an EP, and offer a way to observe the EP experimentally in time-dependent quantum
systems.
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One of the basic properties of quantum mechanics is that
the Hamiltonian of a given system is Hermitian and its energies
are real. This is important in the context of describing bound
states, but in open quantum systems where particles can decay,
metastable states can form. Non-Hermitian (NH) quantum
mechanics (NHQM) has been an efficient tool to describe
such systems ever since the pioneering work of Gamow [1]
and Siegert [2] in tackling the problem of nuclear decay.
NH Hamiltonians come about in a variety of ways which
are often due to the reduction of the physical problem to
an effective Hamiltonian describing a restricted part of the
system. For a detailed account of how NH Hamiltonians are
obtained and the physical meaning of the complex energies, see
Ref. [3].

For open quantum systems where the effective Hamiltonian
is NH, the noncrossing rule [4] is replaced by an intersection of
two complex energy levels associated with two eigenfunctions
of the NH Hamiltonian that have the same symmetry. Let us
consider the 2 × 2 Hamiltonian matrix H which depends on
potential parameters q1 and q2. These can be, for instance,
the laser frequency and intensity when light interacts with two
normal modes of a molecule.

In an open quantum system, where the effective Hamilto-
nian is NH, all matrix elements can attain complex values.
The complex diagonal matrix elements are associated with
metastable (resonance) states, such that −2 Im[H11] and
−2 Im[H22] are the decay rates of the metastable states. The
eigenvalues of this NH Hamiltonian are degenerate when
� = (H11 − H22)2 + 4H12H21 = 0 even though all matrix
elements are different from zero. This situation is very different
from the Hermitian (standard) case where crossing requires
H12 = H21 = 0 and H11 = H22. At the crossing point a non-
Hermitian degeneracy (NHD) is obtained when the following
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two equations are satisfied:

Re[H11 − H22] = ∓2 Im[H12H21]1/2, (1)

Im[H11 − H22] = ±2 Re[H12H21]1/2. (2)

NHD is very different in its nature from Hermitian
degeneracy. NHD is obtained at the crossing point denoted
by (qEP

1 ,qEP
2 ), where the two eigenvalues coalesce and form

a branch point also known as an exceptional point (EP) in
the complex energy spectrum [5,6]. At the EP the first-order
derivatives of the eigenvalues with respect to q1 or q2 acquire
infinitely large values (see, for example, Chap. 9 in Ref. [3]).
Moreover, at the EP, not only do the eigenvalues coalesce
but also the corresponding eigenvectors. Such a phenomenon
can never occur in standard QM. In NHQM, as q1 → qEP

1
and q2 → qEP

2 , the two biorthogonal eigenvectors of the
complex non-Hermitian Hamiltonian matrix coalesce. Rather
than two different biorthogonal eigenvectors, we get only one
eigenvector which is self-orthogonal (with respect to the c
product) [7,8]. As proved in Refs. [9,10], EPs are a common
feature phenomenon in NHQM.

In the past decade it became clear that EPs are not only
mathematical objects but they play a major role also in
actual measurable phenomena. Different manifestations of EPs
have been described in a variety of fields [11–16], So far
experimental results regarding EPs in atomic, molecular, or
biophysical systems are lacking.

Before proceeding we should mention the most striking
phenomenon induced by EPs which has no equivalent in
Hermitian QM: the state-exchange phenomenon. The state-
exchange phenomenon can be illustrated as follows: Consider
an arbitrary variation of the two parameters (q1,q2) which
depend on angle variable ϕ in a closed loop around an EP
(qEP

1 ,qEP
2 ). The two instantaneous eigenvalues are given by

E±(ϕ) = H11 + H22 ± √
�(ϕ)

2
, (3)
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where the quantity �(ϕ) makes a circle around the origin in
the complex plane with a change of ϕ. Thus, it is easy to
see that E±(0) = E∓(2π ). Instead of the Berry phase, which
is obtained when cycling around a conical intersection, when
cycling around an EP one state flips into the other (see Chap. 9
in Ref. [3]). To the best of our knowledge the only measurement
of this phenomenon was carried out by Richter and co-
workers in microwave experiments [14]. The association of the
state-exchange phenomenon with a molecular system was
made by Lefebvre and co-workers [17].

The model 2 × 2 Hamiltonian matrix which was discussed
above can describe, in the NH case, two coupled resonance
states, where H11 is the complex energy of the atomic,
molecular, or mesoscopic resonance state that absorbed one
photon, H11 = E1 − i�1 + h̄ω, while H22 = E2 − i�2 is the
complex energy of the excited resonance state. �1 > 0 and
�2 > 0 are the decay rates of the two resonance states. The
coupling term as usual is given by H12 = H21 = ε0d12/2,
where ε0 is the maximum laser field amplitude and d12

is the complex dipole transition-matrix element. The NH
Hamiltonian matrix can be now rewritten such that

H =
(

E1 + h̄ω + i��
2

ε0d12
2

ε0d12
2 E2 − i��

2

)
− i

�1 + �2

2

(
1 0
0 1

)
,

(4)

where �� = �2 − �1. As one can see from Eq. (4), relative
gain and loss states are obtained (e.g., when �� > 0, then one
state has a relative gain while the other resonance state has a
relative loss). EP is obtained when Eqs. (1) and (2) are satisfied.
Consequently, an EP in the spectrum is obtained when the
maximum field amplitude is εEP

0 = ��/Re[d12] and the laser
frequency is equal to ωEP = (E2 − E1 − Im[d12]εEP

0 )/h̄. When
the laser field is strong enough to allow a multiphoton
absorption, the calculations of the conditions for EP are slightly
more complicated but achievable.

In closed systems adiabatic solutions converge to the
exact solutions of the time-dependent Schrödinger equation
(TDSE) in the limit of infinitely slow variation of the potential
parameters. In contrast, in open systems for almost any path
in parameter space, the nonadiabatic couplings become more
significant as the potential parameters are varied slower.
As a result, the adiabatic theorem often breaks down in
open quantum systems. Let us explain this for our 2 × 2
model Hamiltonian when the two potential parameters q1

and q2 are time-dependent parameters. These can be external
field parameters such as laser frequency and intensity. The
conventional adiabatic approximation is associated with the
eigenvalues Ead

± (q1,q2) and eigenfunctions φad
± (q1,q2) of

the Hamiltonian matrix in Eq. (4). The dynamical nonadiabatic
corrections to the solutions of the TDSE result from the
dependence of the potential parameters q1 and q2 on time.
These couple different adiabatic states and are given by
the following matrix elements,

V NA
+/− = V+/−e+i

∮ T

0 �Ead[q1(t),q2(t)]dt ,
(5)

V NA
−/+ = V−/+e−i

∮ T

0 �Ead[q1(t),q2(t)]dt ,

where

V+/− = 〈φad
+ (q1,q2)|q̇1

∂

∂q 1
+ q̇2

∂

∂q 2
|φad

− (q1,q2)〉,
(6)

V−/+ = 〈φad
− (q1,q2)|q̇1

∂

∂q 1
+ q̇2

∂

∂q 2
|φad

+ (q1,q2)〉,

and

�Ead(q1,q2) = Ead
+ (q1,q2) − Ead

− (q1,q2)

≡ �Ead(q1,q2) − i��ad(q1,q2). (7)

Here T is the duration of the loop in the parameter space.
For closed systems where the Hamiltonian is Hermitian,
�Ead(q1,q2) has real values only. Therefore the exponents
in Eq. (5) are just a phase factor, and the nonadiabatic
corrections vanish as T → ∞ (i.e., the variation of the
potential parameters is arbitrarily slow).

In an open system where we are dealing with resonances,
the energy difference might be complex. The imaginary part
of the energy difference, ��ad > 0, for instance, leads to
V NA

+/− → ∞ while V NA
−/+ → 0 as T → ∞. The exponential

divergence in T of the exponent in V NA
+/− easily overcomes

the 1/T suppression (responsible for the Hermitian adiabatic
theorem) that is associated with the preexponential terms
in Eq. (5) that contain the time derivatives of the potential
parameters q̇1,2. This implies that in the limit of slow evolution
only one state evolves adiabatically while the other state
behaves nonadiabatically. The adiabatic state is the one which
decays slower. For other states the adiabatic solution is not
valid even approximately, making the adiabatic flip often
discussed in the literature [17,18] impossible.

Let us assume that our protocol implies that the external
potential parameters (q1,q2) are varied in time in a closed loop
which encircles the EP (see, for example, Fig. 1). This EP is
obtained at the values (qEP

1 ,qEP
2 ) of the external parameters.

Note that this dynamical protocol requires to solve the
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FIG. 1. (Color online) Loops in the parameter space of the laser
intensity and wavelength. When the laser intensity is turned on,
the ninth and the tenth vibrational states of the molecular ion become
resonances. The EP is obtained when the two resonances become
degenerate non-Hermitian eigenstates. Note that the red dashed line
representing a chirped Gaussian laser pulse closes a loop on the zero
intensity axis.
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time-dependent Schrödinger equation. The only adiabatic
solution which describes correctly the dynamics is the longest-
lived resonance state. The lifetimes of the adiabatic resonance
states are obtained by averaging the decay rates over the
entire closed loop in the potential parameter space. That is,
the inverse lifetime of the adiabatic states denoted by ± are
given by T −1

∫ T

0 �ad
± dt , where �ad

± is the decay rate at any
given point on the closed loop.

A key point in understanding the difference between the
dynamics for bound and decaying systems is to realize how
the nonadiabatic dynamical correction terms couple different
adiabatic solutions. There is an asymmetric phenomenon in
the strength of the dynamical nonadiabatic coupling between
two adiabatic resonance solutions which does not exist
between two bound adiabatic solutions. The strength of the
nonadiabatic coupling term that induces a transition from the
|φad

+ 〉 state to the |φad
− 〉 state is proportional to e− ∫ T

0 ��addt

while the strength of the coupling that induces the transition
from the |φad

− 〉 to the |φad
+ 〉 adiabatic resonance solution is the

inverse of this expression, i.e., e+ ∫ T

0 ��addt [see Eqs. (5)–(7)].
This asymmetric dynamical nonadiabatic effect stands behind
our discovery that at the end of the propagation the system
is found in the longest-lived pure state, irrespective of the
initial condition. This effect is not due to the “evaporation”
of the shorter-lived adiabatic states. It happens because the
short-lived adiabatic states are transformed into the long-lived
adiabatic states during propagation. This phenomenon was
first described in Ref. [19]. In Ref. [20] this state-exchange
phenomenon was illustrated for a real physical system of H2

+
interacting with chirped laser pulses.

We are now at the core of the universal asymmetric
state-exchange phenomenon which is the focus of this study.
It is based on the observation that the integral

∫ T

0 ��addt

changes sign when the loop in parameter space changes from
the clockwise direction to the counterclockwise direction if
the closed loop encircles an EP (this is due to the exchange
of the instantaneous states which is the property of the EP
described above). This means that the dynamical protocol
described above imposes specific asymmetry for our time-
dependent Hamiltonian. The consequences are dramatic. By
applying the dynamical protocol in the clockwise direction,
the |φad

+ 〉 state is obtained, as the external parameters return
to their initial values (independently of the initial state).
The |φad

− 〉 state will be obtained when the same protocol
is applied in the counterclockwise direction. This way we
can control the dynamics and produce a quantum diodelike
device for atomic, molecular, or optical systems, such that
the output depends on the direction in which one enters the
device.

To illustrate and confirm the possibility of a diodelike
quantum gate by applying the nonadiabatic time-asymmetric
(NA-TAS) mechanism, we apply the above protocol to H2

+
in a laser field characterized by its wavelength λ and intensity
I0 or, alternatively, by its frequency ω and amplitude ε0. We
chose this system since it was a subject of experimental studies
for many years (see, for example, Ref. [21]) and since our
theoretical predictions can be experimentally confirmed.

In the spirit of Eq. (4), we use the formalism described
in Ref. [20] where the radiation introduces a time-dependent
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FIG. 2. (Color online) The asymmetric state-exchange mecha-
nism in H2

+. Wν(t) is the projection of the propagated H2
+ wave

packet (WP) during a chirped Gaussian laser pulse on the field-free
vibrational states of the molecular ions, ν = 9 and ν = 10. The thin
black lines describe the solution which starts at the ν = 9 vibrational
state whereas the thick red lines describe the solution which starts at
the ν = 10 vibrational state. The chirp changes the laser wavelength
and intensity in time according to the dashed red loop encircling
the EP shown in Fig. 1. (a) A positive chirp corresponds to a
clockwise trajectory on the loop. (b) A negative chirp corresponds
to a counterclockwise trajectory on the loop. Similar results are
obtained when we follow a trajectory along the blue solid line in
Fig. 1.

coupling between the ground and excited electronic states of
the molecular ion system. We assume that the the whole effect
of the laser field is to bring the bound vibrational states of
the ground electronic state [Eg(R)] up by one photon energy
and couple it with the continuum of the excited electronic
state [Ee(R)] through the dipole d(R). This leads to following
effective Hamiltonian:

Ĥ (R; t) =
(

T̂ (R) + Eg(R) + h̄ω(t) ε0(t)d(R)
2

ε0(t)d(R)
2 T̂ (R) + Ee(R)

)
. (8)

Here R is the internuclear distance, T̂ (R) is the nuclear kinetic
energy operator, and the functional dependence of Eg,e(R) and
d(R) is given in Ref. [22]. Since the bound vibrational states
of the ground electronic potential interact with the scattering
states of the excited electronic potential in which they are
embedded, they become metastable. The resonance energies
are obtained by the complex scaling method [7]. The numerical
results were obtained by propagating the system from t = 0
by using the Runge-Kutta method where in each time step the
wave function is expanded in the basis of the instantaneous
solutions of Eq. (8).

Figure 2 demonstrates the interaction of H2
+ with a

chirped Gaussian envelope laser pulse according to two
different protocols shown in Fig. 1 by the red dashed line.
Figure 2(a) displays the results of a positive chirp which
follows the dashed line in Fig. 1 in the clockwise direction
while Fig. 2(b) shows the results of a negative chirp which
traverses the same loop but in the counterclockwise direction.
In both cases the pulse is centered around 401 nm, the pulse
duration is 164.5 fs, the chirp rate is 1.3 × 10−3 fs−2, and
the peak intensity is 5.9 × 1012 W/cm2. Note that in these
calculations we normalized the propagated wave packet (WP)
to unity at any given time in order to compensate for the
decay.
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TABLE I. The driven asymmetric effect on the state-to-state
vibrational transitions of H2

+ when either positive or negative chirp
laser pulses are used. In a separate column we show that the adiabatic
approximation yields an incorrect prediction for the final state. In
both cases the laser parameters are varied in a closed loop which
encircles the EP shown in Fig. 1.

Initial Final (adiabatic) Final (exact)

|9〉 |10〉 |9〉� |10〉 |9〉 |9〉
|9〉 |10〉 |10〉� |10〉 |9〉 |10〉

The results of Fig. 2 can be summarized in Table I to
illustrate how by going along a loop in one direction we
always obtain one of the coalescing states, whereas by going
in the other direction we will always wind up in the other
state. This result is independent of the initial superposition of
the two field-free states. These results clearly demonstrate the
power of the mechanism proposed in this research, with the
purpose to induce asymmetric transition which is caused by a
nonadiabatic interaction between metastable states.

What is missing in this representation is the fact that the
NA-TAS mechanism is not only very efficient in producing
asymmetric molecular diodelike device but can also be
achieved at smaller pulse times, which can reduce the number
of molecules that dissociate during the interaction with the
laser and thus increase the population which survives in the
desired state by the end of the pulse.

In order to illustrate this important property of the NA-TAS
mechanism, we present below the dependence of the surviving
population in each of the field-free states on the duration of
the laser pulse. The path we trace in the laser parameters
space follows the solid and dotted loops in Fig. 1. These loops
are of the form I (τ ) = I0 sin(τ/2), λ = λ0 + δ sin τ , where
τ = 2πt/Tloop. The angular dependence of the wavelength λ

and laser intensity insures that these loops trace the same path
in parameter space when we change the duration of the pulse
Tloop. The solid-line loop encircles the EP marked by the circle
on Fig. 1 whereas the dotted-line loop does not.

In Fig. 3 we show the population in the ninth and tenth
vibrational states of H2

+ at the end of the laser pulse as a
function of the pulse duration Tloop. The initial state in all cases
is an equal weight superposition of the two states. Figure 3(a)
shows the results for a clockwise path along the loops while
Fig. 3(b) gives the results of a counterclockwise path along the
loops.

It is evident from the results of Fig. 3 that, by encircling an
EP, a better separation between the final populations of the two
states occurs. This separation is also obtained at a much shorter
pulse duration, thus enabling to achieve a desired state with a
significant number of undissociated molecules remaining.

Figure 3 demonstrates that due to the nonadiabatic cou-
plings of Eq. (5), whenever we wait long enough, a separation
between the surviving population of the two states will occur.
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FIG. 3. (Color online) The population Pj of the ninth (black) and
tenth (red) vibrational states of H2

+ at the end of the laser pulse on a
logarithmic scale as a function of the pulse duration Tloop. The solid
lines correspond to the solid-line loop in Fig. 1, which encircles the
EP, while the dashed lines correspond to the dotted-line loop in Fig. 1,
which excludes the EP. The initial state for all calculations is an equal
weight superposition of the two states. (a) displays the results of
the clockwise path on the loops while (b) portrays the results of the
counterclockwise path on the loops.

This is obviously due to the difference in the decay rates
of the instantaneous solutions. In general, the state which
survives and the duration of the pulse required to reach
separation strongly depend on the loop parameters. However,
by encircling an EP we have a means to ensure that we
achieve clear separation and to choose the desired resulting
state by the NA-TAS mechanism. In order for the instantaneous
solutions to exchange, when we encircle the EP adiabatically,
one solution must have a decay rate larger than that at the EP
while the decay rate of the other solution must be smaller.
This makes the NA-TAS protocol around the EP presented
here very effective and controlled. It is also robust since it will
be applicable in any physical system where an EP occurs (i.e.,
any system open to decay).

Here we showed that there are observable physical phe-
nomena which are hard to predict by Hermitian quantum
mechanics but can be readily explained and predicted by
using the theoretical tools developed within the framework
of non-Hermitian quantum mechanics. Moreover, the time-
asymmetric state-exchange mechanism, which is based on our
ability to locate non-Hermitian degeneracies, enables one to
control the dynamics by external parameters of the fields with
which the system under study interacts. This may open a door
to different types of technologies, to other types of photo-
switches, diodelike atomic, molecular, and optical devices.
For instance, the propagation of leaky modes in waveguides
is often described by a non-Hermitian operator. The relevant
control parameter in this case is the index of refraction of the
materials comprising the waveguide. Applying the scheme we
presented here to such a system may allow the fabrication of
a device which yields an output signal based on the direction
one enters the device, regardless of the input signal.
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