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ABSTRACT: Complex eigenvalues, resonances, play an important role in a large
variety of fields in physics and chemistry. For example, in cold molecular collision
experiments and electron scattering experiments, autoionizing and predissociative
metastable resonances are generated. However, the computation of complex resonance
requires modifications of standard electronic structure codes and methods, which are
not always straightforward, in addition, application of complex codes requires more
computational efforts. Here we show how resonance eigenvalues, positions and widths,
can be calculated using the standard, widely used, electronic-structure packages. Our
method enables the calculations of the complex resonance eigenvalues by using
analytical continuation procedures (such as Pade)́. The key point in our approach is the
existence of narrow analytical passages from the real axis to the complex energy plane.
In fact, the existence of these analytical passages relies on using finite basis sets. These
passages become narrower as the basis set becomes more complete, whereas in the
exact limit, these passages to the complex plane are closed. As illustrative numerical
examples we calculated the autoionization Feshbach resonances of helium, hydrogen anion, and hydrogen molecule. We show
that our results are in an excellent agreement with the results obtained by other theoretical methods and with available
experimental results.

1. INTRODUCTION

1.1. Motivation. One of the biggest challenges of electronic
structure calculations is to take autoionization into consid-
eration. Autoionization is a process in which an electronic
metastable state decays through spontaneous emission of an
electron. Such a state has a finite lifetime, it is known as a
resonance and it is not part of the Hilbert space. Therefore, it is
more difficult to calculate its energy, relative to a bound state.
The possibility that in a specific geometrical structure the
molecule can be autoionized implies that the electronic and the
nuclei coordinates are coupled. In such a case, the Born−
Oppenhiemer (BO) approximation breaks down completely,
making the electronic structure computation much harder. A
possible solution to the problem is to impose outgoing
boundary conditions on the eigenfunctions of the time
independent electronic Hamiltonian within the framework of
the BO approximation. In this way, complex potential energy
surfaces (CPESs) are obtained. The real and the imaginary
parts of the CPES provide, respectively, the energy (position)
and the autoionization decay rate (width or inverse lifetime) of
a molecule as a function of its geometry. CPESs can be
obtained by using complex basis functions,1 analytical
continuation of the Hamiltonian’s matrix elements2 or one of
the complex scaling transformations, such as the uniform,3

exterior4 or smooth exterior scaling.5 Alternatively, CPESs can

be obtained by introducing a complex absorbing potential
(CAP)6,7 or a reflection-free CAP (RF-CAP) to the
Hamiltonian.8

Essentially, the complex electronic eigenvalues obtained
within the BO picture serve as potentials of the nuclear time-
independent Schrödinger equation. In other words, by using
the complex electronic eigenvalues there is no need to go
beyond the BO approximation, because they introduce
couplings between the nuclear and the electronic coordinates
in a simple way. This holds also when several resonances exist
but do not overlap. Still, although this idea was presented many
years ago,9 so far it has not become a widespread approach for
solving the dynamics of metastable polyatomic molecules.
Unfortunately, the reason for this lies in the fact that most of
the commercially used codes do not support the above
modifications, rendering the computation of complex potential
energy surfaces an unconventional task. However, the need for
reliable CPESs is a must in large variety of fields in chemistry
and molecular physics, in which quantum mechanical dynamics
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of molecules is of interest. A good example for this acute need
is the most recent cold chemistry10 and electron scattering
experiments.11 Recently, there were serious efforts to develop
codes for calculating CPESs.8,12−16 Yet, it is most desirable to
have a simple approach that uses standard electronic structure
codes to calculate CPESs, because these codes are highly
optimized and very efficient.
Here, we propose a simple method of calculating CPESs,

which utilizes standard electronic structure codes without
modifying them. This approach is based on an analytical
continuation of results obtained in the real space into the
complex plane. There are many different approaches to carry
out analytical continuation from the real to the complex plane.
Several of which are briefly described in the next section. In our
approach analytical continuation of a single real eigenvalue
from the stabilization graph into the complex plane is
performed. This idea is not new and it faced criticism in the
past because the whole eigenvalue plot is not an analytical
function of the scaling parameter.17 However, the way we
implement this idea avoids this problem by not using the whole
stabilizations plot but only an analytical part of it.
1.2. Background. As mentioned above, complex energy

surfaces are the electronic eigenvalues obtained within the BO
picture. Their real and imaginary parts correspond respectively
to the energy position and width. These eigenvalues represent
metastable states with a finite lifetime, resonances. According to
the Balslev and Combes theorem, atomic autoionization
resonances becomes square integrable functions by applying
uniform complex scaling (UCS) transformation of the form r
→ rη, where r is the electronic coordinates and η is the scaling
parameter defined as η = α exp(iθ) (and α and θ are
real).3,18−20 To implement Balslev and Combes theorem in a
molecular system, Simon proposed the use of an exterior
scaling transformation that avoids the singularities in the BO
molecular Hamiltonian,4 which is analogous to the numerical
procedures presented in refs 1, 2, and 21. In both atomic and
molecular transformations the Hamiltonian’s spectrum is
changing: while the bound states are unaffected and are
characterized by real eigenvalues, the continuum states are
rotated into the complex plane by an angle of 2θ; i.e., these
complex eigenvalues strongly depend on θ.5 In addition, the
autoionization resonances, characterized by complex eigenval-
ues, appear in the spectrum. The first time they are exposed is
at a critical value of the rotation angle θ = θBP.

22 At this critical
value a branch point (BP) is obtained in the spectrum of the
complex scaled Hamiltonian (see Figure 3 in ref 19). However,
as θ increases the autoionization resonances stabilize and show
low dependency on θ, meaning that stationary points in the
complex energy plane are obtained.
There are a few early approaches for calculating the

resonances position and width from standard hermitian
electronic structure calculations. For example, resonances can
be approximated from the density of states in the continuum,
they can be calculated from the asymptotes of the continuum
eigenfunctions or from the phase shifts of the eigenfunctions
(see chapter 3 in ref 5). Alternatively, the resonances can be
obtained from stabilization calculations where the eigenvalues
are computed for an increased number of basis functions23 or
when finite given basis functions are scaled by a real factor.24,25

Here we propose to analytically dilate the real energies into
the complex plane via the Pade ́ approximant. At its basis this
approach is also not new: In 1981 Simons used the stabilization
calculations and suggested to carry out a unitary transformation

from the adiabatic energy levels to the diabatic presentation.26

In the diabatic representation the electronic energy levels are
coupled, unlike in the adiabatic picture, where the electronic
energies are represented as noninteracting states. Therefore, in
the adiabatic picture avoided crossings are obtained, whereas in
the diabatic picture crossings are exposed in the complex plane.
These crossings represent the BPs, and their exposure facilitates
locating the nearby stationary points (the resonance energy).
An even simpler approach was introduced by Thompson and

Truhlar27 and later modified by Isaacson and Truhlar.28 Under
this approach the resonance complex energy is obtained by
analytically continuing a single eigenvalue into the complex
plane, to this end the whole stabilization curve is used.
However, as McCurdy and McNutt17 pointed out, analytic
continuation of a single-root fails due to the existence of
nonanalytic regions in the eigenvalue plot. Note that this
important claim holds only when the analytical continuation is
carried out from the region in the stabilization graph(s) which
mainly focuses on the avoided crossing region. Hence,
McCurdy and McNutt suggested a multieigenvalue method.
They carried out analytical continuation of the characteristic
polynomials of the Hamiltonian matrix using at least two
eigenvalues (see section 2.3). Doing so, they avoided the
nonanalyticity of the corresponding eigenvalues and located
stationary points. In fact, McCurdy with McNutt opened a new
research direction for calculating resonances from stabilization
graphs. This multieigenvalue method is indeed pursued until
today29,30 and it relies on the correct description of the avoided
crossings.
Nevertheless, in this paper we show that under easy to fulfill

conditions, resonances can be accurately calculated from a
single stabilization root. This is provided we carry out the
analytical continuation from data points on the stabilization
graph that focus on the stable regions rather than the avoided
crossings. This implies that we do not need to implement the
BP structure in the analytical continuation as done before.28,30

Let us explain this point in some detail. In refs 28 and 30
resonances were calculated from a single root using analytical
continuation. These analytical continuation schemes take into
consideration the BP structure, and the data points for the
analytical dilation must include the avoided crossing region in
real space (which is in the neighborhood of a BP in the
complex plane). On the contrary, the method introduced here
avoids the BP by using input data from the stabilization graph
that focus on the stable region. Therefore, we can carry out
analytical continuation of a single energy root using the Pade ́
approximant and do not impose explicitly the BP structure. It
was demonstrated before that the Pade ́ method used here
enables the calculations of BPs and, therefore, includes
implicitly the information on the BP structure (see for example
ref 31). Furthermore, in ref 28 it was stated that their single-
root method is not as accurate as McCurdy and McNutt’s
multiroot methods, and in ref 30 it is argued that including
multiroots in the analytical continuation introduces numerical
stability relative to a single-root approach. On the contrary, as
we will show, the method we present here enables very accurate
calculations of resonance positions and widths from a single
root. Again, this is provided we only use data from the
stabilization graph that focus on the stable region rather than
the avoided crossing region. We illustrate below that we can
always remain in an analytic area, and eventually converge to a
stationary point in the complex plane. This converged energy is
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in an excellent agreement with the eigenvalue obtained by an
explicit complex scaling calculations.
The proposed analytical continuation scheme resembles

Moiseyev’s and Corcoran’s suggestion to treat molecular
resonances within the BO picture by evaluating the molecular
Hamiltonian matrix elements.2 These matrix elements are
analytical functions of the scaling factor, even though the
operator is not, because the contour of their integration in the
complex plane can be chosen to be such that avoids the singular
points.1,2,21,32,33 Therefore, they can easily be analytically
continued to the complex plane.1,2 In a similar way, we
demonstrate here the existence of an analytical path from the
stabilization graph toward a complex stationary point. This path
bypasses any BP, thus avoiding any singularity. The existence of
such a path results from using a finite basis set, which is a
compulsory, this critical point is elaborated in the next section.

2. THEORETICAL SCHEME

2.1. Resonances from Square Integrable Basis
Functions: Complete vs Finite Bases. Upon complex
scaling, autoionization resonances become square integrable
functions; therefore, they are exposed as eigenfunctions in the
Hilbert space. When the complex scaling parameter is defined
as η = α exp(iθ), the continuum states are strongly dependent
on θ; however, in the exact limit, they are invariant to α.5 That
is, when a complete basis set is used, the continuum states stay
fixed as α is varied.3,18−20

On the contrary, in actual calculations, when incomplete and
finite basis sets are employed, the continuum spectrum does
vary with respect to α. An example for this behavior is seen in
Figure 1. In this figure the relevant energy levels of the helium
atom and the hydrogen molecule are plotted as a function of α.
In both cases a finite number of Gaussians were used as a basis
set in the calculations (further computational details are given
below) and it is clear that the states depend on α. This
dependency can be utilized to calculate the resonance position
and width. To do so, one must first identify the resonance
footprints in the stabilization plot. In Figure 1 these footprints
are clear: while continuum energies change strongly with
respect to α, one specific energy seems to stay fixed and
emerges out of the plot. This energy corresponds to the

resonance position that is not highly affected by the variation of
the scaling factor. The reason for this stabilization is clear: the
resonance wave function is localized in space. Therefore,
relatively small expansion or compression of the basis functions
does not have much effect on it. In contrast, the other states are
associated with delocalized functions and therefore are strongly
affected by the scaling factor.
Although the resonance position emerges out of the

stabilization plot, its width is harder to extract.34 One way to
obtain its width is to move into the complex plane. There, the
resonance is square integrable and appears as a complex
eigenvalue of the Hamiltonian. The imaginary part of this
eigenvalue corresponds to the resonance width. One easy
method to move into the complex plane is by analytical
continuation from the stabilization plot.17,26−30 However, this
continuation should be done with caution because an avoided
crossing in the stabilization plot is associated with singularity, a
BP in the complex plane. This singularity is caused due to the
fact that as the resonance becomes square integrable, it
separates from the continuum. At this critical point, the
resonance and the rotating continuum coalesce in the complex
plane. This causes the spectrum to be deficient and thus
nonanalytic.
The existence of an avoided crossing in the stabilization

graph raises difficulties, and analytically continuing a single
eigenvalue can fail to accurately find a stationary point in the
complex plane.17 For this reason, McCurdy and McNutt17 and
later Jordan and co-workers29,30 used at least two eigenvalues to
obtain a truncated characteristic polynomial of the Hamil-
tonian. Then, they performed analytical continuation of the
polynomial coefficients instead of the eigenvalue (see section
2.3). Yet, because finite basis sets are always employed, there is
a way to analytical continue a single eigenvalue into the
complex plane. The “trick” is to focus on a small part of the
stabilization plot, which is a relatively stable region, instead of
the avoided crossing. This region, which appears to be nearly
linear, actually has a relatively low curvature, as opposed to the
high curvature that characterizes the avoided crossing region.
This small region is a perfect starting point for the desired
analytical dilation into the complex plane because it contains
enough information.

Figure 1. Energy stabilization plots for (a) the helium 2s2 resonance state (b) the hydrogen molecular 1σu
2 resonance state (R = 1.4 au). The

stabilization is obtained by varying the real scaling parameter, α. The red and green areas in (a) represent the two regions that were used as a starting
point for the two analytical continuations. For H2 only one stable region, marked in red in (b), was used for the analytical continuation.
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It is important to stress that this “trick” is only applicable in a
finite basis set. Under an infinite basis set it is impossible to
carry out analytical continuation of an eigenvalue into the
complex plane. As the basis set approaches completeness, the
number of avoided crossings increases, and thus the singularity
area in the complex plane increases too. That is, there is no way
to analytically dilate a single eigenvalue and avoid the BP.
In the next section, a comprehensive discussion and

illustration are presented explaining why when finite basis
sets are used, it is possible to bypass the singularity and find an
analytical route toward the desired stationary point. Moreover,
it is shown that when finite basis sets are used, it is actually very
difficult pinpoint the exact location of a BP let alone pass
through it.22,35

2.2. Finite Basis Set as a Means To Bypass the Branch
Point. As previously discussed, the resonance position and
width can be obtained by moving into the complex plane using
the complex scaling parameter η = α exp(iθ). In the complex
plane, the resonances are recognized as complex energies that
are not affected by a small change in α and θ, i.e., stationary
points. Graphically, we identify them as cusps in the θ- or α-
trajectories plots. Such stationary points are located close to the
BP but are always deeper into the complex plane (see Figure 2
in ref 17 and Figure 2 in ref 22). Another good example for this
is given in Figure 2, where θ-trajectories calculations for the 2s2

resonance state of helium are presented. In these trajectories, α
is held fixed and the rotational angle, θ, is increased from zero
(the hermitian case). As indicated in the black θ-trajectory, the
rotational angle θ = θBP, in which the BP is obtained, is much
smaller than the value of θ at the stationary point. That is, to
locate a stationary point by varying θ from the real axis, it is
necessary to go through a BP. Theoretically, this feature is a
problem when one tries to find the stationary point through
analytical continuation; however, as clearly seen in Figure 2, in
practice it is not. In this figure, two additional trajectories are

plotted. These blue and red trajectories reach the stationary
point smoothly without passing through a BP. In other words,
contrary to the complete basis set case, in which the BP is α-
independent, when a finite basis set is used, the BP is obtained
for a very specific value of α = αBP (as shown in Figure 2). As a
matter of fact, it is very hard to pinpoint the exact location of a
BP and there are specific methods developed to locate it.22,35

Here, for example, the BP parameters, θBP and αBP, were found
using such a method.35 However, these parameters are never
fully exact but rather a mere estimate to the real values. To sum
it up, for finite basis sets, the fact that the BP is obtained only
for very specific values of α and θ is an advantage.
In light of the above, the resonance stationary point can be

found via analytical continuation of the real eigenvalue from the
stabilization plot into the complex plane. This is examined
below by comparing atomic and molecular resonance positions
and widths obtained by the proposed analytical continuation
with the results obtained by explicit UCS methods.
Below a mathematical demonstration is given for the claim

that in a finite basis set analytical continuation to the complex
plane is feasible. It is based on the fact that α is always different
than the exact αBP.
Sufficiently close to the BP where the stationary point lies (α

= αSP), the complex eigenvalues associated with the resonance
and continuum states are given by the leading terms in the
Puiseux series5,22
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Therefore, it is clear that a coalescence is an unlikely scenario,
particularly when θ = θBP. That is, because αSP ≠ αBP the
eigenvalue associated with the stationary point is an analytical
function of θ.

2.3. Analytical Continuation via the Padé Approx-
imant: From Real Eigenvalues to the Complex Energy
Plane. There is no unique way to carry out analytical
continuation from the real energy to the complex energy
plane within the method presented here. In principle, the
calculations of the all order derivatives of the real energy with

respect to a real scaling parameter of the basis functions η,
η
Ed

d

n

n ,

enable one to obtain the Taylor series expansion,

∑η η η η= + −E E a( ) ( ) ( )
n

n
n

0 0
(3)

If E(η) is an analytical function of η, it implies that the Taylor
series expansion is converged also when η gets complex values.
That is, after the calculations of the coefficients in the Taylor
series expansion of E(η) using data from the real stabilization
graph we can substitute in the Taylor expansion a complex
values of η. The difficulty in such a procedure rises form the
need to accurately calculate high-order derivatives of the real
energy with respect to the real scaling parameter.

Figure 2. Complex eigenvalues of a nonhermitian helium Hamiltonian
matrix obtained by the use of UCS, η = α exp(iθ) where θ is varied and
α is held fixed. Three θ-trajectories are presented with different α
values. The αBP-trajectory is presented in black and includes also the
BP (pink). The green arrows represent the direction of the θ-
trajectories from zero by 0.001 radians increments. Note that the
rotational angle θBP, in which the BP is obtained, is much smaller than
the value of θ at the stationary point. In these UCS calculations a finite
Gaussians basis set is used.
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To avoid the need to calculate the high-order derivatives, one
can use the Pade ́ approximant. In this approximation, one fits
the real energy obtained from stabilization calculations as a
function of a real scaling parameter to a ratio between two
polynomials

η η
η

=E
P
Q

( )
( )
( ) (4)

The Pade ́ approximant was successfully used before to avoid
divergence of the complex scaled cross sections,36 and to
remove the artificial CAPs that were introduced in the
numerical calculations.37 In previous analytical continuation
studies, where the BP has been taken explicitly into
consideration, a polynomial form, such as E2 + p(η)E + q(η)
= 0, had been used.17,28−30 In these works, analytical
continuation of the coefficients p(η) and q(η), instead of the
eigenvalue, was performed. The reason for using this
polynomial instead of eq 4 is the nonanalyticity of the energy
in the avoided crossing regions.
It is interesting to see that when the focus is not on the

avoided crossing regions, excellent results are obtained by
analytically dilating the energy eigenvalue using eq 4. To
illustrate this point, Figure 3 presents the dilated stabilization
plots (violet) obtained from data taken from different regions
(red) in the exact stabilization graph (black). Figures 3a, 3c and

3b, 3d correspond to the helium 2s2 and H2 1σu
2 resonances,

respectively. In Figures 3a and 3b the dilated stabilizations are
obtained from data in the stable regions, whereas in Figurea 3c
and 3d the data are taken from the relatively high curvature
regions that include the avoided crossings. Clearly, the dilated
plots originated from the stable regions reproduce the correct
structure of the exact stabilization graphs, whereas the plots
originating from the high curvatures regions do not. This
indicates that these stable regions contain the relevant
information, and that it is possible not to consider the BPs
structure (associated with avoided crossings) as done
previously.17,28−30

In practice, we generate an analytical approximation to E(η)
by the Schlessinger point method.38 This method requires a set
of M input variables and their corresponding values. In our
case, we select η = αeiθ as the input variable, or more precisely η
= α (where θ = 0), and E(α) as the corresponding value. The
input data, E(α), are taken from the relatively stable region in
the stabilization plot, which excludes the avoided crossing. For
example, to calculate the 2s2 resonance state of helium, we used
the red or green regions in the stabilization plot shown in
Figure 1a. That is, each region (red or green) is used as a
starting point for a different calculation. The Schlessinger
truncated continued fraction has the form

Figure 3. Exact and analytically dilated energy stabilization plots for (a, c) the helium 2s2 resonance state and (b, d) the hydrogen molecular 1σu
2

resonance state (R = 1.4 au). The dilated graphs are generated via Pade ́ using the input data marked in red. In (a) and (b) the input data are taken
from the stable part of the stabilization, whereas in (c) and (d) the input data are taken from the high curvature regions.
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where the zi coefficients are chosen such that

α α= =C E i M( ) ( ) 1, 2, ...,M i i (6)

Once the zi coefficients are determined, we perform an
analytical continuation into the complex plane by evaluating
CM(η) (where η is complex, i.e., θ ≠ 0). Convergence of the
extrapolated function, CM(η), with respect to M is routinely
checked, and the difference between CM(η) and CM−1(η) is
reported as the Pade ́ error.
The procedure we propose is summarized as follows:

(1) Calculate a stabilization plot using a standard electronic-
structure approach as in Figure 1.

(2) Use the points in a stabilized region as input for the
Schlessinger point method. Remember to exclude the
avoided crossings like the colored regions in Figure 1.

(3) Fit the selected points to a Pade ́ polynomial by making
sure that this polynomial reproduce the original values
for the input variables.

(4) Perform analytical continuation in the real plane (i.e.,
with θ = 0) to make sure an appropriate set of points was
chosen. A too dense set of input points will damage the
performance of the Pade ́ approximant and will end up in
a linear extrapolated plot that is almost independent of α.

(5) Perform analytical continuation into the complex plane:
generate a θ-trajectory with a fixed α. The fixed α should
be taken from its values in the stable region of the
stabilization plot.

(6) Look for an optimal θ value in which a cusp is seen in the
θ-trajectory.

(7) Calculate an α-trajectory using the optimal θ found in
step 6. Look for the optimal α in which a cusp is seen in
the α-trajectory.

(8) Repeat steps 5−7 until the optimal α and θ are
converged. Upon convergence, a clear cusp is obtained
in both α- and θ-trajectories. Both cusps will touch each

Figure 4. Helium 2s2 resonance stationary points and the corresponding α- and θ-trajectories. (a) Stationary point energies for the 2s2 resonance.
Empty triangles represent stationary points obtained by UCS, and the full triangles are stationary points obtained by our analytical continuation.
Each triangle correspond to the cusps in (b), (c), and (d). (b) α- and θ-trajectories obtained from our analytical continuation scheme starting from
region 2 in Figure 1a (green lines) and the corresponding UCS calculations (purple lines). (c) α- and θ-trajectories obtained by our analytical
continuation scheme starting from region 1 in Figure 1a. (d) α- and θ-trajectories obtained from the UCS calculations that correspond to (c). In (b)
a clear cusp is seen, indicating one stationary point. In (c) and (d) two cusps are seen (one in black and the other in red), indicating two stationary
points. Every stationary point is marked with a blue arrow. In (b), (c), and (d) the closed and open circles correspond to the α- and θ-trajectories,
respectively.
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other (e.g., Figure 7). These cusps are associated with a

stationary point that satisfy η →
α
∂

∂ E( ) 0 and

η →
θ
∂
∂ E( ) 0.5

(9) Check the Pade ́ errors of the stationary point and make
sure it is reasonable.

(10) It is recommended to repeat the process with a slightly
different set of input points to examine the stability of the
stationary point.

This procedure is very easy and quick. The only time and
computational consuming step is step 1. That is, this procedure
is much simpler than actual electronic-structure calculations
inside the complex plane.

3. COMPUTATIONAL DETAILS
In this work we study the Feshbach resonance states of the
helium atom, the H− anion, and the H2 molecule with the
leading 2s2, 2s2, and 1σu

2 configurations, respectively. In all cases
we reach the full configuration interaction (FCI) limit. For
helium we use our own CI code for two-electron atoms and
ions including complex scaling transformation.39 For H− and
H2 we use the standard equation-of-motion couple-cluster with
singles and doubles (EOM-CCSD) for excitation energies
implemented in the Q-Chem package.40 The ground states,
which play the role of the reference states, are 1s2 for helium
and H− and 1σg

2 for H2.
The basis sets employed are composed of primitive Gaussian

functions because they can be scaled trivially. UCS is performed
by rotating the Gaussians basis functions by r → r η, where r is
the Gaussian coordinate and η is the scaling parameter defined
as η = α exp(iθ) (α and θ are real).3,18,19 Stabilizations are
obtained by scaling the Gaussians when θ is set to zero.
For helium we use a 19s 15p 10d 8f (19/15/10/8) series of

exponentially tempered basis functions.39 The basis set is
optimized for calculating the helium states with the highest
principal number n = 2 and the highest partial angular
momentum l = 3 (1s2, 1s2s, ..., 2f2) for about 10−5 hartree
precision.
For H− we use a 12s 10p 5d 3f 2g (12/10/5/3/2) set based

on the Bentley and Chipman basis, which includes s- and p-
type functions and was used to calculate the H− resonance
before.41 The contracted 1s orbital is transformed into three
primitive functions. In addition, the basis is augmented with the
d-, f-, and g-type functions of the aug-pcJ-4 basis set.42

Convergence of the resonance energy with respect to the
number of diffuse basis functions is ensured by further
augmenting this basis with two s- and two p-type diffuse
functions, which results in a 14/12/5/3/2 basis set.
For H2 we report results obtained by using a 12s 10p 3d 2f

(12/10/3/2) basis, which is based on the 5ZP basis set.43 In
this basis we replace the most diffuse s-function with six diffuse
functions, and the most diffuse p-function with seven diffuse
functions, where an even-tempered spacing of 2.0 was
employed for their construction. In addition, the most tight
d- and f-type functions where replaced with diffuse functions.
This basis is referred to as Basis1. Basis set convergence is
ensured by comparing this basis set results with two other
bases. First, to make sure we obtain convergence with respect
to the number of diffuse basis functions, we compare the 12/
10/3/2 results with the ones obtained with a similar basis in
which the most diffuse s and p functions are removed (a 11/9/
3/2 basis set). We observe convergence within 10−8 hartree for

the resonance energy between the two bases. Second, we
examined a denser 12/9/3/2 basis set, in which the three most
diffuse s-functions of the original 5ZP basis set are replaced
with eight diffuse functions (with even-tempered spacing of
2.0), everything else is similar to the 11/9/3/2 basis set. This
basis is referred to as Basis2. Below, we report results obtained
by Basis1 and Basis2.
All the bases exponents are presented in the Supporting

Information.

4. NUMERICAL APPLICATIONS
4.1. Helium Autoionization Feshbach Resonance: A

Comprehensive Test Case. Because helium is a well-studied
and simple system,39 the helium 2s2 state can serve as a
comprehensive test case, for which we can study autoionization
processes and explore the capabilities of new computational
schemes. Furthermore, helium is a two-electron system; hence,
it is easy to calculate this resonance position and width using
FCI and UCS. Doing so, no approximation is done on the
electronic structure and a pure comparison to a new method
can be performed. Therefore, in our study this calculation was
used as a reference point. Such a comparison for the helium 2s2

resonance can be seen in Figure 4. In this figure, optimal cusps
from both UCS calculations and our analytical continuation
calculation are presented. For the analytical continuation
calculations the cusps were obtained through the iterative
procedure described in section 2.3. A similar iterative scheme,
in which FCI calculations were performed in each step, was
carried out for the UCS calculation. A remarkable agreement
between the UCS calculations and our analytical continuation is
clearly observed.
In Figure 4b two cusps are displayed. One cusp was obtained

by using region 2 in Figure 1a as the starting point for the Pade ́
analytical continuation. The converged scaling parameters of
the Pade ́ cusp were then used as starting points for the UCS
iterative calculations. Doing so, a UCS cusp was also obtained.
The two cusps were in excellent agreement, both in their
scaling parameters and in their position and width. In other
words, the Pade ́ approximant was able to produce a very
accurate α- and θ-trajectories based on the real stabilization
plot.
In Figure 4c two cusps are displayed for the Pade ́ analytical

continuation. This time, the cusps were obtained using region 1
in Figure 1a as the starting point for the Pade ́ approximant.
Each cusp represented another resonance stationary energy,
where the two energies differ by 2 × 10−4 hartree for the
imaginary part, and by 4 × 10−5 hartree for the real part.
Similarly, in Figure 4d two cusps are also displayed for the UCS
calculations. Again, each cusp represented another resonance
stationary energy where these two energies are within less than
10−4 hartree difference for both real and imaginary parts. It is
important to note that the UCS cusps were obtained as
described above. That is, the converged scaling parameters of
the Pade ́ cusps were used as starting points for the UCS
iterative calculations.
A good summary of Figure 4b−d is displayed in Figure 4a.

This figure demonstrates the proximity of the Pade ́ results to
the UCS ones. Each stationary point obtained by the UCS
calculations has an analogues point obtained by the Pade ́
approximant, where in all cases there is a good agreement
between them. In fact, the distance between each cusp couple
was calculated and was found to be 1.4 × 10−4, 1.1 × 10−4, and
2.5 × 10−4 hartree for the black, red, and green cusps,
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respectively. Recalling the fact that the Pade ́ procedure is a fast
and simple computational scheme, these results are very
encouraging.
To better understand how our analytical continuation

scheme works, a thorough investigation was done using the
UCS calculations. During this investigation, the complex
eigenvalue associated with He (2s2) resonance was calculated
at 720 different scaling parameters (θ and α). Figure 5
represents the absolute value of the eigenvalue derivative at
these points in both 3D and 2D contour plots. Figure 5a and 5c
display this derivative with respect to θ, whereas Figure 5b and
5d display this derivative with respect to α. Looking at the
figures, the theory behind our analytical continuation becomes
clear. First, it is obvious that for small θ’s, there are regions in
the derivatives (with respect to α and θ) that exhibit very large
values. These values are associated with the BPs and are
forbidden areas for analytical continuations. Yet, it is also quite
clear that in spite of these forbidden areas, there are analytical

paths that start on the real scaling parameter axis (i.e., θ = 0)
and end up in stationary points in the complex plane.
Moreover, there are even paths that lead from one resonance
stationary solution to another. An example of such a path is the
gray dashed line in Figure 5c,d. This path starts from region 2
in the stabilization plot of Figure 1a and goes through each
stationary point that was found in Figure 4. That is, this
investigation is a numerical illustration for the possibility to find
analytical paths from areas in the standard stabilization
calculations to the complex stationary points.
Another interesting point that can be seen in Figure 5 is that

the entrance to the complex plane from the real axis always
starts as a very narrow path. In fact, these passages occur only
because the calculation employs a finite basis set. For an infinite
basis set the passages will close down, because as the basis set
approaches completeness the number of avoided crossing
increases, and the singularity area in the complex plane

Figure 5. 3D plot and the corresponding 2D contour plot of |∂(E − iΓ)/∂θ| (a, c) and |∂(E − iΓ)/∂α| (b, d) of the 2s2 helium resonance as a
function of α and θ. White arrows mark the complex stationary solutions, for which the complex derivative is minimal. These points are associated
with the cusps in Figure 4. Note the narrow analytical paths that go from the real axis to the complex plane. A gray dashed line demonstrates such a
path. This path starts from a certain area in the real stabilization plot and goes to the complex plane through the three stationary points.
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increases too. That is, there is no way to analytically dilate the
single eigenvalue and avoid the BPs, the passes are close.
The existence of only narrow paths in a finite basis set

framework indicates that a careful search for these analytical
paths in the complex parameter plane (α and θ) is required and
still, the Pade ́ approximant has no problem locating these paths.
However, in the absence of such analytical paths the method
presented here is not applicable and one may use the analytical
continuation of the characteristic polynomials as described in
ref 17.
Figure 6 is another illustration to the information in Figure 5.

In this figure we show a 3D plot of the helium 2s2 complex

eigenvalue as θ is varied; i.e., we show α-trajectories at different
fixed θ’s. In this figure we examine the complex eigenvalue
itself, unlike in Figure 5 where the derivative of the complex
eigenvalue was examined. It is clear that cusps are obtained in
the α-trajectory calculations as θ becomes larger. However, it is
also clear that there are paths connecting the different cusps
and that these paths start from very specific regions. These
regions are the stable parts of the α-trajectory at small θ’s,
where the eigenvalues are relatively close to one another. In
other words, these paths go to the stable part of the
stabilization plot. In Figure 6 these paths are indicated in the
warm colors (red-yellow), whereas in Figure 5 such a path is
marked by the gray dashed line.
4.2. Autoionization Feshbach Resonance of the

Hydrogen Atomic Anion. To further examine our Pade ́
analytical continuation scheme, we calculate the 2s2 Feshbach
resonance of the hydrogen atomic anion. The results are
presented in Table 1 where they are compared to experimental
and other theoretical works. An excellent agreement with these
estimations is observed, as our results are well within the
experimental errors. Furthermore, the energy position in this
work is lower by 2 × 10−4 hartree from other theoretical works,
and the width is only 1.5 × 10−4 hartree lower than Ho’s44 and
Chen’s45 results, whereas it is 2 × 10−4 hartree higher than the
width obtained by Bravaya et al.12 Additional computational
details and further results can be found in the Supporting
Information.

4.3. Autoionization Feshbach Resonance of the
Hydrogen Molecule. Calculating molecular resonance is a
complicated task, which poses a challenge on the regular
complex scaling methods.2,4,21,32,33 Therefore, it is important to
test the Pade ́ analytical continuation scheme presented here on
a molecular system such as the hydrogen 1σu

2 molecular
resonance. This Feshbach resonance was calculated at an
internuclear distance of R = 1.4 au for which there are several
calculations available for comparison. Note that in the
molecular case, when the basis functions exponents are scaled
by the real factor, α, the electronic coordinates of the Gaussian
basis functions are shifted from their centers, Aj. That is, every
one of the Gaussian basis functions is scaled as, G(ri⃗ − A⃗j) →
G([ri⃗ − A⃗j]/α).
In Figure 7 an optimal cusp for hydrogen 1σu

2 molecular
resonance is shown using Basis1 (see section 3). This cusp was

obtained through analytical continuation of the stable region in
the stabilization plot of this resonance (marked in red in Figure
1b).
Table 2 presents our results using both Basis1 and Basis2,

where Basis2 is a denser basis than Basis1 (see section 3). We
observed relatively minor effect when comparing these basis
sets. The difference for the real part was in the order of 0.0018
hartree whereas there was no difference in the imaginary part.

Figure 6. 3D plot of the helium 2s2 complex eigenvalue as θ is varied.
This plot shows α-trajectories at different fixed θ’s. The stationary
solutions (cusps in the α-trajectories) are clearly seen for larger values
of θ, and it is clear that they can all be connected through certain
paths. For rather small θ a large dispersion in the complex eigenvalue
is shown. However, the paths that connect the different cusps start
from a relatively dense area marked by the warmer colors (red-yellow).
These areas correspond to the stable part of the stabilization plot in
Figure 1a (the red and green region there).

Table 1. Real Part of the Energy (ReE) and Width (Γ) of the
2s2 Feshbach Resonance of H− in hartree

ref −ReE Γ × 10−3

Experiment
McGowan (1967)a 0.1485 ± 0.0004 1.6 ± 0.2
William (1976)b 0.1488 ± 0.0004 1.65 ± 0.2

Theory
Ho (1981)c 0.1487765 ± 0.000002 1.731 ± 0.0008
Chen (1997)d 0.148782 1.72
Bravaya et al. (2013)e 0.1488 1.38
Present work (Pade)́ 0.14855 ± 0.00001 1.56 ± 0.03

aReference 46. bReference 47. cReference 44. dReference 45.
eReference 12.

Figure 7. α-trajectory (black) and θ-trajectory (red) obtained from
our analytical continuation scheme for the H2 (R = 1.4 au). 1σu

2

autoionizing resonance. In this figure an obvious cusp is seen (blue
arrow), indicating a stationary point at θ = 0.18125 and α = 0.658. The
α-trajectory and θ-trajectory overlap at the cusp, as clearly shown in
the inset.
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In Table 2 we compare our results with other theoretical
works. Our results are in an excellent agreement with these
works, particularly, with the RF-CAP.8 A good agreement with
the complex CI and complex multiconfiguration self-consistent
fields (CMCSCF) methods is also observed.48

5. CONCLUDING REMARKS
In this paper, we demonstrate that a single-eigenvalue curve
taken from standard stabilization plots can be analytically dilate
into the complex plane. On this basis, we suggest a simple
procedure that accurately locates resonance positions and
widths. Hence, it opens up a new way to calculate CEPS
utilizing standard electronic-structure codes. This method was
successfully tested in calculating the helium 2s2 Feshbach
resonance state and was compared with explicit UCS results,
yielding an excellent agreement. The success of our approach
implies that it is possible to analytically dilate the energy
eigenvalue itself without making any assumptions about the BP
structure, as done before.17,28−30

In addition, an in-depth analysis was presented. In this
context, numerical illustration clearly indicated the presence of
analytical paths from the real axis to the complex plane when
using finite basis sets. These paths start from the stable region
in the standard stabilization plot. They continue through a very
narrow passage surrounded by huge barriers that represent the
avoided crossings and BP areas. Finally, these paths end up in
valleys of stationary points.
Because these paths are analytical, they can be traced using

the Pade ́ approximant. In this work the Pade ́ approximant was
generated by the Schlessinger point method.38 The input points
for this analytical continuation were taken only from the stable
part in the stabilization plots. In this way, it is simple to
infiltration through the analytical paths and find the resonance
stationary points. It is important to note that this procedure
fails when input points are taken from the whole eigenvalue
curve.17

We showed that the success of the proposed approach is an
outcome of our shortcomings: the mandatory use of finite basis
sets in numerical calculations makes the existence of a BP in the
complex plane a rare occasion. In this case, analytical paths
from the stabilization plot to the stationary point emerge.
Finally, we implemented our approach on different chemical

systems. In addition to helium, the Feshbach resonance energy
of the hydrogen 2s2 atomic anion was calculated as well as the
molecular Feshbach 1σu

2 resonance of H2. The results for the
hydrogen 2s2 atomic anion were in an excellent agreement with
experimental and other theoretical evaluations, whereas the
results for the H2 1σu

2 resonance were in an excellent agreement
with other calculations performed explicitly in the complex
plane.

In spite of the above, we do not claim that our approach
avoids the need to develop and use other methods. The reason
for this is the fact that a region stable enough for a successful
analytical continuation is not always guaranteed. It is
recommended to first verify the conjecture of analyticity at
certain geometries, particularly in the calculations of molecular
autoionization resonances. This can be done by comparing the
results with other methods. As the next step, one can use the
method we proposed for calculating the entire CPES.
To sum it up, here we open a new possibility for calculating

atomic and molecular autoionization resonances in a very
simple manner by using standard and available ab initio codes,
which substantially lower the computational efforts in
comparison with non-herimitian electronic structure codes.
The method we present here is limited to the calculations of
narrow isolated resonances, because broad and overlapping
resonances will not yield stabilization graphs. Therefore, these
types of resonances should be calculated by other means, such
as complex basis sets or by introducing CAPs into the
molecular Hamiltonian.
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