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There is an increasing interest in the photoinduced dynamics in the low frequency, ω, regime. The
multiphoton absorptions by molecules in strong laser fields depend on the polarization of the laser
and on the molecular structure. The unique properties of the interaction of atoms and molecules
with lasers in the low-frequency regime imply new concepts and directions in strong-field light-
matter interactions. Here we represent a perturbational approach for the calculations of the quasi-
energy spectrum in the low-frequency regime, which avoids the construction of the Floquet operator
with extremely large number of Floquet channels. The zero-order Hamiltonian in our perturbational
approach is the adiabatic Hamiltonian where the atoms/molecules are exposed to a dc electric field
rather than to ac-field. This is in the spirit of the first step in the Corkum three-step model. The
second-order perturbation correction terms are obtained when i~ω ∂

∂τ serves as a perturbation and
τ is a dimensionless variable. The second-order adiabatic perturbation scheme is found to be an
excellent approach for calculating the ac-field Floquet solutions in our test case studies of a simple
one-dimensional time-periodic model Hamiltonian. It is straightforward to implement the perturbation
approach presented here for calculating atomic and molecular energy shifts (positions) due to the
interaction with low-frequency ac-fields using high-level electronic structure methods. This is enabled
since standard quantum chemistry packages allow the calculations of atomic and molecular energy
shifts due to the interaction with dc-fields. In addition to the shift of the energy positions, the energy
widths (inverse lifetimes) can be obtained at the same level of theory. These energy shifts are functions
of the laser parameters (low frequency, intensity, and polarization). Published by AIP Publishing.
https://doi.org/10.1063/1.5001866

MOTIVATION AND INTRODUCTION

The possibility to create extremely short pulses, using
high-order harmonics created by a low-frequency driving field,
has stimulated studies of photoinduced dynamics in the low-
frequency regime. Using low-frequency driver lasers for high-
order harmonic generation (HHG) is attractive because the
cutoff limit scales as one over the laser frequency squared. In
1994, Lewenstein et al.1 published an analytic and fully quan-
tum theory of HHG by low-frequency laser fields, opening the
way for various studies on the topic. For example, there are
studies on attosecond pulse emission by elliptically polarized
low-frequency laser fields2 as well as studies on the efficiency
of the high harmonics that is reduced with the increasing of
the wavelength.3

When long laser pulses of monochromatic radiation are
used as the driving laser field to produce the high harmon-
ics, only odd harmonics are produced. The obtained spec-
trum is comb-like, and it is not sufficient for producing iso-
lated attosecond pulses. To produce an isolated short pulse,
one needs to extend the plateau and to generate a denser
spectrum. One of the methods is irradiation with short few-
cycle femto-second pulses in the visible range. The prob-
lem with this method is the difficulty in producing driver
pulses as these. Another method is using a bichromatic laser.
Mauritsson et al.4 showed in 2006 that combining a laser

field with its second harmonic densifies the spectrum and also
even harmonics are produced. Further studies were carried for
different combinations of frequencies.5,6 Fleischer and Moi-
seyev7 showed that for the bichromatic case of (ω, ω + δω),
where δω � ω, much longer irradiance pulses can be used to
produce attosecond pulses, which simplifies the experimental
setup.

There is a difficulty to solve the photoinduced dynamics
in the low-frequency regime. When the frequency is taken to
the low limit, ω→ 0, the period, T, becomes extremely large.
When trying to solve the dynamics using different propagation
schemes, one needs to use a growing number of propagations
steps. The calculations become heavy and troublesome. This
also introduces numerical errors. In most of the propagation
schemes, when the number of time steps is increased, the
density of the grid must be increased as well. When using
another approach and trying to solve the low-frequency prob-
lem using the Floquet method, one encounters a problem
again: Whenω is small, the Floquet states are nested together.
This means that HF needed for results accurate enough
becomes very large, making the calculation laborious and
difficult.

In order to overcome this difficulty, we propose the use of
a perturbation theory with the adiabatic Hamiltonian, where
time serves as an instantaneous parameter, used as a zero-order
Hamiltonian.
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Corkum8,9 and Kulander and Schafer and Krause10

showed that the three-step model (TSM) provides a classical
interpretation of the HHG from atoms in strong laser fields
without solving the time-dependent Schrödinger equation.
Later Lewenstein et al. generalized the TSM to describe the
interaction of arbitrary one-electron potentials with laser fields
of arbitrary ellipticity and spectrum.1 The adiabatic hypothesis
is based on a comparison between the (estimated) tunneling
time (the first step in the TSM) with the period of the laser
field. For sufficiently low laser frequencies, the tunneling time
is smaller than the periodic time of the oscillating electric field,
T = 2π/ω. The photoinduced dynamics can be described by the
Floquet solutions which are eigenstates of the Floquet operator
Ĥad(t) � i~∂t . It is natural to apply perturbation theory where
Ĥad(t) is the zero-order Hamiltonian and �i~∂t is taken as a
perturbation. By making a simple transformation to dimen-
sionless time units τ = ωt, ω is obtained as the perturbational
strength parameter. This approach was first demonstrated by
Pont et al.11

In order to keep the adiabatic functions and energies as
the leading dominant terms in the perturbation expansion of
the Floquet eigenstates and eigenvalues, ω has to be a small
parameter. For large values ofω, one should calculate the high-
order terms in perturbation theory. Calculating the metastable
photoionization states (so called resonances) using out-going
boundary conditions (as used by Gamow to calculate the tun-
neling decay rates for radioactive reactions) enables one to
use the standard time-independent perturbation theory. More-
over, the use of one of the complex scaling transformations is
found to be most helpful even when the tunneling resonances
are very narrow and can be considered as bound states in the
continuum (see, for example, Chap. 5 in Ref. 12). In such a
case, the use of one of the complex scaling transformations
enables to isolate the bound states in the continuum, which
are exponentially localized in the interaction region from the
delocalized continuum states.

In this paper, the numerically exact quasi-energies (QE’s)
of a toy model were calculated for different frequencies using
the (t,t′)-Floquet method. As a Padé approximant was calcu-
lated for them and expanded into Taylor series at ω = 0, it
appears that the leading term in the Taylor expansion in the
low-frequency regime is the ∼ω2 term. This gives a motiva-
tion to study the system using perturbation theory second-order
corrections.

The strategy of our paper is as follows: First we will
briefly explain the use of the (t,t ′) method in the calcula-
tions of the numerically exact solutions of our “toy” model
that illustrates the interaction of an atom with a high intensity
ac-field in the low-frequency regime. We should emphasize
here that the numerical calculations are carried out not only
for illustration but also in order to confirm the validity of
the expressions derived for the leading terms in the adia-
batic perturbation theory where time is used as a parameter
and �i~∂t as a perturbation. Second, we will show how, by
applying the Schlessinger13 approach to the Padé approxi-
mant to the numerically exact results for the quasi-energies
as obtained by the (t,t ′) method, we can get the coefficients in
the Taylor series expansion of the quasi-energies in ω when
the maximum field amplitude is held fixed. In the section

titled adiabatic perturbation theory for atoms and molecules
in the low-frequency laser interaction regime, we represent
the adiabatic perturbation theory that enables the calculations
of quasi-energy narrow resonances from dc-field (Stark) res-
onances. In the last section, we conclude by emphasizing the
ability of using the adiabatic perturbation theory for calcu-
lating the effect of the dc-field on the atomic or molecular
spectrum to obtain the effect of low-frequency intense ac-field
on the atomic/molecular spectrum.

(T,T′) METHOD

In our calculation, we used a toy model of a 1D effective
model potential V(x), which crudely mimics a xenon atom and
is given by

V (x) = −V0e−ax2
, (1)

where V0 = 0.63 a.u. and a = 0.1424 1
a.u.2

.
This potential has two bound states, with energies

E0 = �0.4451 a.u. and E1 = �0.1400 a.u. This model has been
used before for calculating the HHG spectra of xenon.14 The
atom interacts with a linearly polarized laser field ε0x sin(ωt),
where ω is the laser frequency. The calculations were carried
for ε0 = 0.015 a.u., which corresponds to a laser intensity of
I ' 7.9 · 1012 W

cm2 .
In the calculation of the eigenvalues of the full Floquet

type Hamiltonian, we used complex scaling in spite of the
fact that the resonances are very narrow. In this case, complex
scaling is used not for calculating the lifetime but in order to
isolate the bound states embedded in the continuum, which
represent the dressed states of an atom that interacts with a
strong laser field. Note that we are interested only in the real
part of the energies. The imaginary part, which is proportional
to the inverse of the lifetime of the state, is extremely small—
numerically zero.

In order to calculate the numerically exact quasi-energies,
we used the (t,t′) method, which is described in Ref. 15. The
method is based on the use of Floquet operator in the extended
Hilbert space for time-dependant Hamiltonians but avoiding
the need to introduce the time ordering operator when inte-
grating the time-dependant Schrödinger equation. The time
variable t′ is used as a time coordinate in a generalized Hilbert
space. This method applies not only for time-periodic Hamilto-
nians but also to the case of time-periodic boundary conditions.
The method is usable also for short laser pulses, provided that
the envelope of the pulse supports sufficiently large number
of optical cycles (typically more than 15).16 Thus, the great
advantage of this method is enabling the use of computational
techniques originally developed for time-independent Hamil-
tonians. See the results for the quasi-energies as obtained from
the (t,t′) method presented in Fig. 1.

PADÉ APPROXIMANT

The well-known Padé approximant is the approximation
of a function by a rational function of given order. The Padé
approximant often gives a better approximation of the function
than truncating its Taylor series, and it may still work where the
Taylor series does not converge. One of the methods inspired
by Padé is the Schlessinger point method.13
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FIG. 1. Energies using Padé-Schlessinger point method: The real part of the
energy as a function of the laser frequencyω (whereω ' 0.01 a.u. is equivalent
to λ ' 4.56 µm) calculated for ε0 = 0.015 a.u., corresponding to a laser
intensity of I ' 7.9 · 1012 W

cm2 . The red circles represent the exact quasi-
energies (QE’s). The black solid line represents the results from the Padé-
Schlessinger point approximation calculated using 18 QE’s from the (t,t′)
calculation (0.05 ≤ ω ≤ 0.21 a.u.).

The price we pay is that in order to use the Padé method,
we need to calculate first the quasi-energies as function of
the laser frequency, which is hard to do at the low-frequency
regime.

The Padé approximant for the real part of the QE of
the ground state in our model was calculated using the Sch-
lessinger point method: In our calculations, it was calculated
using 18 QE’s from the (t,t′) calculation (0.05 ≤ω ≤ 0.21 a.u.).
The real part of the Padé expression is given by

EPadé(ω) =

∑m
j=0 ajω

j∑n
k=0 bkωk

=
a0 + a1ω + a2ω

2 + · · · + amω
m

b0 + b1ω + b2ω2 + · · · + bnωn
,

(2)

where the coefficients aj and bk are given in Table I.
The results of the Padé approximant are shown in Fig. 1.

The red circles represent the real part of the numerically
exact QE’s. The black solid line represents the results from
the Padé-Schlessinger point approximation. The Schlessinger
point method enables analytically continuing the QE’s calcu-
lated for higher frequencies down to the low-frequency field
limit.

The beauty of the Padé approximation is clearly seen in
Fig. 2 as the Padé approximation manages to find the points

TABLE I. Coefficients of the Padé approximant: The coefficients of the Padé
approximant for the real part of the quasi-energies as a function of the laser fre-
quencyω [See Eq. (2)]. The coefficients were obtained using the Schlessinger
point method.

aj Value bk Value

a0 +0.000 000 246 069 95 b0 �0.000 000 552 126 95
a1 �0.000 011 598 22 b1 +0.000 026 023 862
a2 +0.000 223 669 11 b2 �0.000 501 856 7
a3 �0.002 220 116 4 b3 +0.004 981 089 2
a4 +0.011 296 681 b4 �0.025 340 174
a5 �0.019 618 022 b5 +0.043 945 618
a6 �0.067 292 28 b6 +0.151 406 68
a7 +0.354 285 96 b7 �0.796 212 68
a8 �0.444 928 28 b8 +1.0
a9 0 b9 �0.000 292 557 6

FIG. 2. Energies using Padé-Schlessinger point method. The real part of the
energy as a function of the laser frequency ω (ω ' 0.01 a.u. is equivalent to
λ ' 4.56 µm) calculated for ε0 = 0.015 a.u., corresponding to a laser intensity
of I ' 7.9 ·1012 W

cm2 . The red circles represent the exact quasi-energies (QE’s).
The black solid line represents the results from the Padé-Schlessinger point
approximation calculated using 18 QE’s from the (t,t′) calculation (0.05 ≤
ω ≤ 0.21 a.u.). Note the amazing agreement between the higher frequency
QE points (those not used to create the Padé approximation) and the Padé
approximation. This figure is the same as Fig. 1 but for a larger domain of
frequencies.

of singularity and bypass them. The higher frequency ener-
gies (ω > 0.21 a.u.) calculated by the (t,t′) method have an
amazing agreement with the energies predicted by the Padé
approximation. There is a singularity at ω ≈ 0.3 a.u. which
corresponds to the energy difference between the two states.
This singularity is clearly seen from the Padé approximation
graph. In addition, the Padé approximant manages to predict
the discontinuity-like behaviour at ω ≈ 0.22 a.u., which raises
from multiphoton effects.

The Padé expression can be expanded into Taylor series,∑∞
n=0

E(n)(ω0)
n! (ω −ω0)n, by calculating the differentials. In this

case, we get the following expression, when calculated for
ω0 = 0 (~ = 1),

E(ω) = −0.445 676 53 + 0.000 007 14 · ω

− 0.006 523 99 · ω2 + 0.001 921 49 · ω3

− 0.081 325 55 · ω4 + 0.048 939 48 · ω5 · · ·. (3)

It can clearly be seen that the odd coefficients are smaller
than the even ones. For low frequencies, the most important

FIG. 3. Comparison between QE-obtained Taylor expansion to the Padé-
Schlessinger point approximation: The real part of the energy as a function of
the laser frequency ω (given here in atomic units where ω ' 0.01 is equiva-
lent to λ ' 4.56 µm) calculated for ε0 = 0.015 a.u., corresponding to a laser
intensity of I ' 7.9 · 1012 W

cm2 . The red circles represent the exact quasi-
energies (QE’s). The other graphs represent the Taylor series expansion to the
Padé approximation, expanded atω = 0, up to the n-th degree—please see the
legend on the side.
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contribution comes from the second degree term, E(t,t′)
QE ≈ E(0)

+ (~ω)2E(2) (see Fig. 3). Note that here we use the Taylor series
expansion based on the Padé calculations and not based on the
results obtained from the adiabatic perturbation approach that
will be presented in the section titled adiabatic perturbation
theory for atoms and molecules in the low-frequency laser
interaction regime.

ADIABATIC PERTURBATION THEORY FOR ATOMS
AND MOLECULES IN THE LOW-FREQUENCY
LASER INTERACTION REGIME

The Hamiltonian H(t) stands for an atom or a molecule
which interacts with a low-frequency laser field. The laser
parameters are the frequency, ω, the intensity of the ac-
field, I0, and the polarization direction which is defined here
as the x-coordinate. It is clear that for aligned molecules,
the dipole transition matrix element, d(R), depends on
the polarization direction and also on the molecular struc-
ture. d = 〈φ0|x|φ1〉, where x is the polarization direc-
tion and φ0 and φ1 will be defined later in this sec-
tion. For many electron systems, the dipole is given by
d = 〈φ0({xj, yj, zj}j=1,2,...,Ne )|

∑Ne
j=1 xj |φ1({xj, yj, zj}j=1,2,...,Ne )〉.

For the sake of simplicity, in our derivations, we define here
the laser parameter ε0 =

√
I0d(R).

If the laser pulse is sufficiently long, the photoinduced
dynamics of the atom/molecule-laser system can be described
by the solutions of the Floquet operator Ĥ(t) � i~∂t . We use
a perturbational approach and define Ĥ(t) as the zero-order
Hamiltonian and −i~∂t as the perturbation.

The quasi-energy solutions of the time-dependent
Schrödinger equation with time-periodic Hamiltonian, H(t)
= H(t + T ), where T = 2π/ω, (the so-called Floquet solutions)
are given by

Ψ(x, t) = e−iEt/~ψ(x, t), (4)

where ψ(x, t) = ψ(x, t + T ). The phase factor, E, and the time-
periodic function ψ(x, t) are correspondingly the eigenvalues
and eigenfunctions of the Floquet operator,

(−i~
∂

∂t
+ H(t))ψ(x, t) = Eψ(x, t) . (5)

The adiabatic solutions are the eigenvalues and eigenfunctions
of H(t) where time is considered as a parameter and not as a
dynamical variable as in Eq. (5),

H(t)φj(x, t) = Ej(t)φj(x, t) . (6)

The index j = 0, 1, . . . is associated with the quantization of
the adiabatic Hamiltonian H(t). The quantized electric field is
associated with infinite number of photons since the electric
field is classical. n = 0 is taken as a reference of infinite number
of photons and n = ±1, ±2, . . . is associated with emission or
absorption of photons due to the interaction of the laser with
the atomic/molecular system. That is,

− i~
∂

∂t
eiωnt = ~ωneiωnt . (7)

Therefore, the zero-order states are taken as

ψ(0)
j,n (x, t) = eiωntφj(x, t) (8)

and assign two good quantum numbers (j, n). The ground state
is given by

ψ(0)
0,0 = φ0(x, t). (9)

We define the first exited state with n = 0 and j = 1,

ψ(0)
1,0 = φ1(x, t). (10)

According to perturbation theory,

E(0)
0 =

1
T

∫ T

0
E0(t)dt. (11)

By making a simple transformation to dimensionless time units
τ = ωt, ω is obtained as the perturbational strength parameter.
Thus, dt = dτ

ω . From now on, we consider τ and ω to be two
independent variables in spite that in the original Hamiltonian
τ = tω. Consequently, when the perturbation parameter, ω, is
set to zero, then the zero-order Hamiltonian becomes the exact
one. The zero-order term of the energy is given by

E(0)
0 =

1
2π

∫ 2π

0
E0(τ)dτ. (12)

The first-order term is given by

E(1)
0 =

1
T

∫ T

0
(φ0(t)| −

~

i
∂

∂t
|φ0(t))dt (13)

=
1
T

∫ T

0
(−
~

i
∂

∂t
)
1
2

(φ0 |φ0)dt (14)

=
1
T

∫ T

0
0dt (15)

= 0, (16)

where “(|)” stands for c-product. For similar reasons, every
odd correction term will be zero.

The second-order correction term is given by

E(2)
0 = −

~2

T

∫ T

0

(φ0(x, t)| ∂∂t |φ1(x, t))(φ1(x, t)| ∂∂t |φ0(x, t))

E1(t) − E0(t)
dt

(17)
and since ∂

∂t = ω
∂
∂τ ,

E(2)
0 = −

~2ω2

2π

×

∫ 2π

0

(φ0(x, τ)| ∂∂τ |φ1(x, τ))(φ1(x, τ)| ∂∂τ |φ0(x, τ))

E1(τ) − E0(τ)
dτ.

(18)

In the case of interaction with a linearly polarized laser field
ε0x sin(τ), using the complex Hellman-Feynman theorem as
derived in Ref. 17, we get

E(2)
0 = −

~2ω2

2π

∫ 2π

0

(φ0 |xε0 cos τ |φ1)2

(E1(τ) − E0(τ))3
dτ (19)

(notice that ε0 is the maximal field amplitude and Ej
(0) are the

adiabatic eigenvalues).
The results, carried for ε0 = 0.015 a.u., are shown in

Fig. 4. The red circles represent the exact QE’s. The black
dashed line represents the zero-order QE’s, calculated by using
the perturbation theory. It is clear that as we approach the
low frequencies, the “exact” energies approach the zero-order
approximation. The blue solid line represents the QE obtained
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FIG. 4. Comparison between QE obtained by the (t,t′) method and the per-
turbation theory: The real part of the energy as a function of the laser fre-
quency ω (given here in atomic units where ω ' 0.01 a.u. is equivalent to λ
' 4.56 µm) calculated for ε0 = 0.015 a.u., corresponding to a laser inten-
sity of I ' 7.9 · 1012 W

cm2 . The red circles represent the exact quasi-energies
(QE’s). The black dashed line represents the zero-order QE’s, calculated by
using the perturbation theory. It can be clearly seen that as we approach the
low frequencies, the “exact” energies approach the zero-order approximation.
The blue solid line represents the QE obtained by adding the second-order
term.

by adding the second-order term. There is good agreement
between the QE’s calculated by the perturbation theory up to
second order and the numerically exact QE’s calculated using
the (t,t′) method. The advantage of the perturbation theory is
that it can be applied also for real systems, where calculating
the QE’s in another way would be numerically hard.

DISCUSSION AND CONCLUSIONS

The growing interest in low-frequency photoinduced
dynamics encourages developing ways to calculate the ener-
gies of a given system for given laser frequency,ω. The second-
order adiabatic perturbational method we propose enables the
calculation of the QE of a system for a required frequency. The
results are found to be in excellent agreement with energies
calculated by other methods, such as the (t,t′) method. Using
the (t,t′) method in the low-frequency limit becomes hard as
many Floquet channels are nested together and involved in
the dynamics of the system. The perturbational approach does
not have this difficulty. Another essential advantage of this
second-order perturbational approach is in the ability to use
the standard quantum chemistry packages for calculating the
effect of low-frequency ac-field on the atomic and molecular
spectrum based on molecular calculation under dc-field.

The quantum chemistry packages provide the excited
energy levels and the corresponding eigenfunctions. Due to the
use of finite number of basis functions, the continuum spec-
trum is discrete, and narrow resonances (long lived metastable
states) are described in standard quantum chemistry pack-
ages (such as Q-Chem) as bound states in the continuum. In
such a case, the adiabatic approach presented in our paper
is applicable, and φ0, φ1, E0, and E1 can be calculated by
using the quantum chemistry packages without the need to use
the complex scaling transformation as we used in our illus-
trative numerical study. Since uniform complex scaling can
be applied to atoms interacting with static fields, the calcu-
lation of atomic dc-resonance positions and widths (inverse
lifetimes) using the analytical continuation to the complex
energy plane of the real energies, obtained by the quantum

chemistry packages, by Padé is possible. In a very similar
way, one can use Padé approximation to carry out the ana-
lytical continuation of the real corresponding eigenfunctions,
obtained from the quantum chemistry packages, to the com-
plex plane. This possibility has not been tried yet but should
be doable. In particular, it seems doable since this approach
for calculating the φ0 and φ1 functions is equivalent to the use
of complex basis functions. Due to the fact that in some quan-
tum chemistry packages the use of complex Gaussian basis
functions is possible already, the resonance positions, widths,
and corresponding eigenfunctions can be already calculated by
the use of these packages. For example, resonance positions
and widths were calculated for atoms in dc-field in Ref. 18
by using the Q-Chem package. The calculations of molecular
ac-field induced resonances are not straightforward due to the
non-analytical dilation property of the electron-nuclei poten-
tial energy terms (see discussion in Ref. 12). However, by using
the stabilization approach, one can calculate the effect of dc-
field on the spectrum of atomic and molecular systems similar
to calculations of the energy of metastable molecular autoion-
ization states [see, for example, the calculations of the energy
curve of He(32s)–H2 using standard quantum chemistry pack-
age19]. The next step of the calculations involves the adiabatic
second-order perturbation approach. Namely, the energy and
wavefunctions for atoms and molecules in dc-field, as obtained
from the stabilization graphs, are used in the calculations
of energy shifts (position) by ac-field in the low-frequency
regime. Moreover, the width (inverse lifetime) can be obtained
using standard quantum chemistry packages nowadays, for
example, via removing the artificial effects of complex absorb-
ing potentials (CAPs), developed in Refs. 20 and 21, and
using the analytical continuation via the Padé approach for
calculating molecular resonances from stabilization graphs.
Therefore, the strong intensity low-frequency ac-field effect
on the atomic and molecular energy spectrum can be calcu-
lated while the dynamical electronic correlations are taken into
consideration.
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