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ABSTRACT: We present a simple expression and its derivation for reaction rate
coefficients for cold anisotropic collision experiments based on adiabatic variational
theory and time-independent non-Hermitian scattering theory. We demonstrate that
only the eigenenergies of the resulting one-dimensional Schrödinger equation for
different complex adiabats are required. The expression is applied to calculate the
Penning ionization rate coefficients of an excited metastable helium atom with molecular
hydrogen in an energy range spanning from hundreds of kelvins down to the millikelvin
regime. Except for trivial quantities like the masses of the nuclei and the bond length of
the diatomic molecule participating in the collision, one needs as input data only the
complex potential energy surface (CPES). In calculations, we used recently obtained ab
initio CPES by D. Bhattacharya et al. (J. Chem. Theory Comput. 2017, 13, 1682−1690) without fitting parameters. The results
show good accord with current measurements (Nat. Phys. 2017, 13, 35−38).

1. INTRODUCTION

The great progress of advanced experimental techniques has
enabled the study of the Penning ionization (PI) at very low
temperatures.1−9 In such a reaction, an electron is transferred
from the collision partner (usually an atom or a molecule) to
the partially empty orbital of metastable atom A* and the
initially excited electron of A* is ejected to the continuum. This
is very efficient, in particular, in a head-on collision when the
projectile and the target get close to each other. A recent
experiment revealed the role of anisotropy in the subkelvin
regime when the PI occurs.4 It was demonstrated how the
change from spherical to nonspherical symmetry qualitatively
affects the collision dynamics. Thus, a theoretical description is
strongly desired. There are several quantum mechanical
scattering techniques currently being used to calculate reaction
rate coefficients (or cross sections) for cold molecular
collisions. Jankunas and co-workers investigated the PI of
polyatomic molecules by metastable helium and neon within
the framework of the multichannel quantum defect model,5−9

whereas Klein et al. performed close-coupling quantum
scattering computations for collisions of an excited He atom
with molecular hydrogen.4 In quantum mechanical scattering
theory, the cross sections can be calculated in a nontrivial way
based on phase shifts determined from asymptotic solutions of
the time-independent Schrödinger equation, as was recently
done for atom−diatom low-temperature collisions.2,10,11 It is
necessary to develop models and formulas that are adequate to
account for process complexity yet straightforward enough for
implementing and understanding experimental findings.

In this paper, we present a new uncomplicated expression
and its derivation for the reaction rate coefficients based on
adiabatic variational theory10,11 and time-independent non-
Hermitian scattering theory as previously developed by
Moiseyev and colleagues for atomic and molecular scattering
from solid surfaces,12−16 to electron scattering from mole-
cules,17−20 and to interatomic/intermolecular Coulombic decay
(ICD).21 We show that it is not required to take into
consideration in the calculations the different products of the
reaction involving real potential energy surfaces (PESs). It
makes the calculations much more simple. Moreover, the
eigenenergies from the radial Schrödinger equation for different
adiabats are only necessary. Consequentially, the reaction rate
expression can be easily implemented by experimentalists. All
computations and results are presented here without any fitting
and scaling. We state that our approach for determining rate
coefficients can be favorably applied for studying cold
anisotropic collision reactions of different complexes when
also other types of ionization occur (ICD,22 Auger decay, etc.).

2. THEORETICAL BACKGROUND

We show the derivation and the final expression for the
reaction rate coefficient of an atom (A) colliding with a
diatomic molecule (M), where the interaction is described by
the complex potential energy surface (CPES). As an illustrative
numerical example, we consider the PI reaction that has been
recently measured1,2,4
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* + → *− → + ++ −A M [A M] A M e (1)

where A* denotes excited metastable helium atom (1s2s, triplet
S), whereas M denotes H2. The reactants form a quasi-bound
complex in a resonance state that decays upon collision.
Because the state of the system He*−H2 is embedded in the
continuum above the ionization threshold of the system He−
H2

+, the PES for the reactants is not real but complex. The
complex intermolecular interaction potential VC for an open-
shell atom in an S state interacting with a molecule expanded in
Legendre polynomials is23,24
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where R is the distance between the atom and the center of
mass of the diatom, Θ is the angle between the molecular bond
and R⃗, and ΓC is the rate of decay from the neutral-excited state
to the cationic one.
We consider the Hamiltonian assuming the stiffness of the

molecule to make our approach simpler. It means that we treat
the diatomic molecule to be a rigid rotor (the bond length r0 is
kept fixed). This approximation results from the fact that the
vibrational molecular frequencies are much higher than the
intermolecular ones. Thus
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where μM is the reduced mass of the diatomic molecule, μAM is
the reduced mass of the van der Waals complex, and j2̂ and l2̂

are the squared angular momentum operators associated with
diatomic and with the atom−diatom relative rotations,
respectively. The components of R⃗ = (R, θ1, ϕ1) point to the
atom from the center of mass of the diatomic molecule, dR⃗ =
sin θ1 dR dθ1 dϕ1, and the angles θ2 and ϕ2 show the
orientation of molecular bond in the same laboratory
coordinate frame.
We split the many-dimensional problem into many

subproblems by applying the adiabatic variational theory.10,11

First, we construct the potential matrix with products of
spherical harmonics as basis functions for a given intermo-
lecular separation. We treat R as a parameter (and not as a
dynamical variable). The matrix is
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where ψq(θ1, ϕ1, θ2, ϕ2) = Yl,ml
(θ1, ϕ1)Yj,mj

(θ2, ϕ2) and q
denotes a superindex containing quantum numbers l, ml, j, mj (l
= 0, 1, ..., lmax; ml = 0, ±1, ..., ±l; j = 0, 1, ..., jmax; mj = 0, ±1, ...,
±j). The form of the matrix more suitable for implementation
is as follows11
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The angle Θ can be written as10 Θ(θ1, ϕ1, θ2, ϕ2) =
arccos(sin θ1 cos ϕ1 sin θ2 cos ϕ2 + sin θ1 sin ϕ1 sin θ2 sin ϕ2 +
cos θ1 cos θ2). All analytical expressions for angular parts in eq 5
are presented in the Supporting Information of ref 11 in a
simple form. The next step is to diagonalize the potential matrix
obtaining complex eigenvalues, R( )q , where q = 1, 2, ..., (lmax +
1)2(jmax + 1)2. We repeat this procedure for different values of
R. The eigenvalues provide jmax + 1 families of effective one-
dimensional potentials. Each family is well-separated and
asymptotically corresponds to a specific rotational state of the
molecule; here we denote these states as jth (“j threshold”). In
o t h e r w o r d s , o n e c a n w r i t e s c h em a t i c a l l y

= α =R R{ ( )} { ( )}q
j

j j0,1,...,th
th max

, where α = 1, 2, ... and

→ ∞α R( )jth = ℏ2jth(jth + 1)/(2μMr0
2) + VC(R → ∞, Θ).

It should be noted that because we do not use the Clebsch−
Gordan coefficients, our potential matrix (eq 5) includes
different values of total angular momentum. By proper
transformation, the matrix can be represented as uncoupled
block matrices. Then, each block is associated with different
total angular momentum J and different project on the z-axis M
that varies from −J to J. Our approach is motivated by the fact
that in the experiment of the Narevicius group1−4 the different
values of J and M are involved in the reaction; thus, we need to
take sufficiently many J and M quantum numbers to get
converged results. The number of states that is needed to get
converged results depends on the temperature, which is
controlled in the experiment by the angle of two supersonic
beams that collide.
Within the framework of the adiabatic variational theory, the

Hamiltonian depends on one variable: R. The Schrödinger
equation for reactants that has to be solved for each adiabatic
effective potential (adiabat) is
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where ν is associated with the vibrational mode of the α-surface
and ε γ−α ν α νi( /2)j j

, ,
th th are complex eigenenergies. For practical

reasons, each adiabat is shifted up to set the dissociation
threshold at zero, i.e., → ∞ →α R( ) 0jth .

3. REACTION RATE COEFFICIENTS FOR ANISOTROPIC
MOLECULAR COLLISIONS AT VERY LOW
TEMPERATURES

Inspired by previous works,25,26 we attempt to find a simple
form of the reaction rate expression that is easy to implement.
For this purpose, we define the dimensionless ionization
probability containing the transition matrix elements from
reactants to products in the following form
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where Γ = −α αR R( ) 2Im[ ( )]j jth th , ρ stands for the density of
continuum states, and δεα ν E,j

,th
col
is the Kronecker delta. Of course,

the Schrödinger equation solutions for He−H2
+, Φβ ξ R( )j

,
th and

ϵβ ξ
j

,
th , are real. Because the problem is non-Hermitian, the c-
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product (···|···) has to be used rather than the usual scalar
product ⟨···|···⟩, where ( f |g) = ⟨f*|g⟩ (see chapter 6 in ref 27
and references therein). One does not take the complex
conjugate of the terms in the “bra” state. The collision energy,
Ecol, has to be positive, and therefore, only the dissociative
states of the quasi-bound system He*−H2 play a role, namely,
ε >α ν 0j

,th . The system can autoionize only when its energy εα ν
j
,th ,

which equals to Ecol, is greater than the product system energy

ϵβ ξ
j

,
th , taking also into account the differences between the

asymptotes of the resonance potential and the product

potential. Note that the quantity ( − ϵβ ξE j
col ,

th ) constitutes the
kinetic energy of an electron.

Because Φβ ξ
j

,
th is real, Φ | = ⟨Φ |β ξ β ξ( j j

, ,
th th . Then, one can simplify

the expression by assuming that ∑ |Φ ⟩⟨Φ |β ξ β ξ β ξ
j j

, , ,
th th is equal to

unity. The probability can be written by means of the scalar
product as follows
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where the information about products is not necessary. The
wave function Ψα ν R( )j

,th is complex. By definition, the

expectation value of −Γα R( )/2jth is equal to the imaginary
part of proper eigenenergy (with accuracy of normalization),
i.e., γ− α ν/2j

,
th . To show it, let us consider the expectation value of

t h e c o m p l e x H a m i l t o n i a n i n t h e f o r m
̂ = ̂ − Γα α αR R R( ) ( ) i ( )/2
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where Nα,ν guarantees the normalization of the function Ψα,ν
with respect to the scalar product, Nα,ν = ⟨Ψα,ν|Ψα,ν⟩. This
quantity may be neglected when ΓC is small because Nα,ν ≃ 1.
As one can see above, in order to find the ionization
probability, the product of γα ν

j
,
th and the energy density of states

for ε =α ν Ej
, colth has to only be calculated. All components are

known from the solution of the Schrödinger eq 6. This one-
dimensional equation can be solved using any known technique
(e.g., such as in refs 28−31). The complex eigenvalues are only
required.
By multiplying eq 9 by the relative velocity of colliding exited

atoms with diatomic molecules and by dividing by square of the
wavenumber for reactants, we ensure the proper units, i.e.,
cm3 s−1. Thus, we obtain a simple expression for the total
ionization rate coefficient asymptotically correlated with a well-
defined rotational state of the molecule
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The above equation is an explicit expression for reaction rate
coefficients in terms of Ecol, εα ν

j
,th , ρ εα ν( )j

,th , γα ν
j
,
th , Nα,ν, μAM, and jth.

One can see that here we do not have to calculate the complex
phase shifts determined from asymptotic forms of the wave
functions of the Schrödinger equation, which is usually done by
means of Bessel-like functions as was performed in our previous
approaches.10,11 Because the continuum is discretized in the
nonexact numerical solutions of the Schrödinger equation, the
Kronecker delta determines interpolation for the numerator in
eq 11.
To demonstrate the quality and reliability of our method, we

calculated the reaction rate coefficients for the collision pairs
He*−para-H2 (j = 0) and He*−ortho-H2 (j = 1) in the
temperature range spanning from room temperature down to
the millikelvin regime. The CPES was taken from ref 26. The
surface was generated on the basis of ab initio coupled-cluster
calculations and the resonances via the Pade ́ (RVP) method
that was recently developed by the authors of refs 26 and 32.
Isotropic and anisotropic radial interaction terms, V0

C

(=Re[V0
C(R)] − iΓ0

C(R)/2) and V2
C (=Re[V2

C(R)] − iΓ2
C(R)/

2), respectively, were included in our computations. Due to the
symmetry reason (the diatom is homonuclear), V1

C vanishes.
The eigenenergies (from eq 6) were determined using the sin-
DVR method with 1500 basis functions and the box size L =
500 au. According to ref 33, the density of states in the
discretized continuum was found from the following formula:

ρ ε ε ε= | − |α ν α ν α ν+ −( ) 2/j j j
, , 1 , 1th th th . The results are presented in

Figure 1 together with the newest molecular beam PI
experimental measurements.4 The agreement is very satisfac-
tory. The peaks of resonances are slightly shifted to smaller
energies. Note that we did not scale the potential surface as was
done by us in refs 10 and 11 and other authors in refs 2, 34, and
35 to fit the calculated reaction rate coefficients to the
experimental results. Moreover, we did not use any fitting
parameters as in refs 5−7 and did not impose short-range and
asymptotic boundary conditions as was done in the applied
technique in ref 4. The input data are the masses, the bond
length (the expectation value of the interatomic distance in the
ground vibrational state: r0 = 1.4487 au4), and lmax (here we
took lmax = 18, although the choice lmax = 12 is sufficient to get
converged results). The measured quantity is not the reaction
rate coefficient at a definite value of the collision energy but the
energy-averaged reaction rate coefficient. Therefore, the
theoretical results are convoluted with the experimental energy
spread using a Gaussian distribution with 10 m/s width. The
convolution, ∫ ′ ′ − ′E G E E E( ) ( ) dcol col col col, was computed

numerically, ∑ ′ ′ − Δ ′E G E E E( ) ( )i i i icol, col, col col, . The structures
of observed resonances are very well reconstructed by the
theory (see Figure 1). Our results with respect to absolute
numbers for the reaction rate coefficients are within the
uncertainty of experimental findings4 due to the large
systematic error in normalization according to the rate
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measurements at 300 K by Veatch and Oskam.36 The
discrepancies between theoretical and experimental data in
positions of resonances occur on account of the imperfect
CPES that is very hard to calculate accurately because the state
of He*−H2 is embedded in the continuum of scattering states
of He−H2

+. Usually, enormous problems with the convergence
of results and linear dependencies arise.
So far, we know how crucial the anisotropic radial potential is

in computations. In ref 11, it is shown that the picture of the
reaction rate coefficient can be incomplete when only the
isotropic radial potential is taken into consideration. Some
resonances can be missed. However, we still do not know what
the effect of the neglect of Im[V2

C] (which is equal to −Γ2
C/2) is

on the rate coefficient. This information may be significant
because the imaginary parts of nonisotropic interaction
potentials frequently are not available in the literature. For
this purpose, we repeated calculations here without Im[V2

C] for
He*−ortho-H2. Note that the potential V2

C does not contribute
to the reaction when the diatomic molecule is in the ground
rotational state (j = 0) due to vanishing all matrix elements of

ψ ψ δ⟨ | Θ| ⟩ −′ ′(3 cos )/2q q q q
2

, in eq 5. The results are presented

in the lower panel of Figure 1 (see the dashed−dotted green
curve). The effect is surprisingly minor and concerns the low-
temperature peak. It turned out that the qualitative explanation

why only lower-energy resonance is affected is very simple.
Only below 1 K does the anisotropic term in the potential
multipole expansion become important. This is exposed in the
inset in Figure 2. Note that the Γ2

C in some sense is the second-

order correction to the Γ0
C; thus, modification of the resonant

structures cannot be dramatic. Moreover, from Figure 1 [lower
panel], one can see that the measured quantity at room
temperature is not changed by taking Γ2

C = 0. Indeed, at high
energies, Γ2

C is large for small R, but it does not affect the final
results because it is much smaller than Γ0

C and especially due to
the repulsive branches of the potentials. This is clearly seen in
Figure 2.

4. CONCLUDING REMARKS
In summary, on the basis of the adiabatic variational theory and
the non-Hermitian scattering theory, we have found a new
simple closed-form expression for the low-energy Penning
reaction rate coefficients of diatomic molecules by excited
atoms. We have demonstrated that only the eigenenergies of
the resulting radial Schrödinger equation for different complex
adiabats are required. Moreover, information about products is
superfluous. The presented expression can be of great interest
for experimentalists because of its ease of implementation. The
expression has been applied to calculate the anisotropic
reaction rate coefficients of the excited metastable helium
atom with H2 in the temperature range from 300 K down to a
few dozen millikelvins. The results show good accord with
recent experimental findings. No scaling and fitting parameters
have been used in any of our calculations. We should put
emphasis on the fact that our expression is applicable not only
to collisions of atoms with diatoms but to a large variety of
atomic and molecular systems where the interaction is
described by the CPES. Definitely, the expression can be
used beyond the adiabatic approach, but then, the problem
becomes more complicated. Of course, for a 1D Hamiltonian,
there is no need for the adiabatic approximation and the
expression can be directly applied to colliding atoms, for
example, for ultracold mixtures of metastable helium or neon
and alkali metal atoms or noble gas atoms. Moreover, our rate
coefficient expression is not restricted to the PI process; it can
be used for studies of other ionization mechanisms such as

Figure 1. Reaction rate coefficients of an excited metastable helium
atom (1s2s, triplet S) with para-H2(j = 0) [upper panel] and ortho-H2
(j = 1) [lower panel]. The reaction rate coefficients have been
calculated using our new expression (eq 11) [dotted blue curve].
Then, the theoretical results have been convoluted with the
experimental resolution [solid purple curve]. The CPES has been
taken from ref 26. No scaling and fitting parameters have been used in
our calculations. The black points with error bars are the latest
experimental data.4 The convoluted results excluding Im[V2

C] in
calculations are represented by the dashed−dotted green curve [lower
panel].

Figure 2. Isotropic and anisotropic radial interaction potentials of
excited metastable helium atom (1s2s, triplet S) colliding with
molecular hydrogen, V0

C(R) (=Re[V0
C(R)] − iΓ0

C(R)/2) and V2
C(R)

(=Re[V2
C(R)] − iΓ2

C(R)/2), respectively. The horizontal dashed−
dotted line corresponds to the collision energy at 1 K. The complex
potential energy surface has been taken from ref 26.
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intermolecular Coulombic decay, which is intensively inves-
tigated now.37
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