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NEW" MOLECULAR BOUND AND RESONANCE STATES
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It has bean shown previopsly that a new type of molecular bound
state can result from corrections to the Born-Oppenheimer
approximation. It is shown here that "new" bound and resonance states
can gecur in-a variety of problems involving coupled wave equations.
Several examples are discussed, the most important one involving the
bound and resonance states of van der Waals complexes.

4. TINTRODUCTION

Some years ago, it was pointed out that non—adiabatic coupling
between two diatomic electronic states can lead to "new" bound
vibrational states (1,2). If a purely repu151ve potential energy curve
which supports np bound states is coupled in a particular way to an
excited potential which dpep support bound ptates, a new bound state
can occur with an energy below the dlssoclatlop limit of the repulsive
curve. Apparently there hgve been no experimental observations of such
a state, and indeed, the conditions for observing and recognizing its
effpcts in spectral data are very stringent (2,3).

New bound staktes may arise not only in systems which violate the
Born-Oppenheimer separatlon but also in scattering processes involving
a single Born-Oppenheimer potential surface. We discuss this situation
in this paper, apnd show that concomitant with the new bound states are
"now" resonance states in the continuum. In addition, we discuas the
PDﬁbLblliLy of new resonance states due to non—adiabatic couplln& of
" two rvepulsive Born-0Oppenbeimer potentials, neither of which supports
bound states. '"New" resonance may occur, particularly when the
interaction between them is localized ang strong. The coupling of
continyum states resulting in a bound state is well known in the thenry
of gupercondugtivity {4).

Of course, a state of 2 system can be désigngted as "new” only with
reference to an approsximate descrlptlcn of the system ip which the
stele in question is absent in the first approximation, When it
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appears at a.higher level of approximation, it is termed "new".

The descriptions we are considering are based on sets of coupled
wave equationg whigh result from averaging a complete wave equation
over all degrees of freedom but one of special interest. Denoting this
special degree of freedom by R and all others by r , the agsumed
form of the exact wavefunction is

WQ(R,E) = z Xna(R) ¢n(r,R)_ ' OS]

wvhere the ¢, aré some fixed basis functions which are complete and
grihonormal im the variables r , and the Xng 4are functions to be
determined from the wave equation. For simplicity, we shall assume
that the ¢ﬁ are real functjions. In the Born-Oppenheimer
approximation for a diatomic meiecule, the r are the electronic
coordinates and R 1s the internuclear separation. In the scatterlng
problemp on a single Born-Oppenheimer potential, the R . 1is the
intermoleculsr separation, and the T are the 1nternal degrees of
[reedom (rotatlons, v1brat10ns) of the scattering moleculés plus the
overall rotational degrees of freedom of the complex,

Substitution of the wavefunction ¥y into the yave equatlon leads

to a set of coupled equations for the functlons Xna
- _ . - . ' - 2
T+ VR - B X (R) 31 VR X, (R) = 0 ()

whore QR is the kinetic emergy gperator for R  and- Vﬁm(R). is the
matrix element of the Hamiltonian in the basis ¢n(r,3) .

If all of the off-diagondl eléments Vom are: small the essential
features of the problem are revealed by naglectlng them completely and
solving the resulting uncoupled. equatlons._ The "ordxnary bound states
arp: obtained at’ this level of approximatiom. ''New" bound ‘states may
result when the off-diagonal elements are considered, as- dlsCUbsed
Prev1uusly (1- 3) and in the next section of, the present paper.

The form of the wavefunction, Eq. (1), is not unique (5-7),
however, since it is invariant ‘to an R~dependent orthogonal
transformation of the ¢, - Such a transformation leads to coupled
equations of the same form ap Eq. (2), but with redefined poluntials
Vo and hence a different deflnltlon of what are "ordinary" and what
aro "new" bound states. " Thus, "new" bound states are new only with
respect. tq a particular choice of basis functioms ¢ , and may be
recast as "ordinary" bound states by 2 proper choice of basis.
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B. "NEW" BOUND STATES

In this section we review the analysis (2,3) which provides the
condition for a "new" bound state to appear at 4 particular stage in a
sequence of approximate solutions to Eq. (2),

We assume that the first level of approximation is to neglect all
nff-diagonal potentials in Eq. (2), This gives a set of uncoupiled
equations, '

g Cin 0 oy,0 = ¢ I
(Tp + V, (R} -~ E )x (R) = 0 o (3)

which may be solved for a set of eigensolutions (Egu,'xga) for each

potential V. (R) . For convenience of notation, we shall assume 2 box
normalization {0 < R < Ryax, XnofRmax) = 0), so that the continuous
spectyum of (Tp+V, .(R}) is represented by a closely-spaced sequence of
eigenvalues. At the end of the discussion we may consider the limit
RBnax * ™ » The case we wish to consider is when the lowest potential

pR) [i.e. ¥y0(Roa) < V. (Ryax), 1 > 0] supports no bound stat
VHU R i.e. 00 Bnax? € Von ngx y B> SUppo no bound states,
Epg > ¥ (Rmax)’ all o, as shown in Figure 1.

CAN

LG LY

Figure 1. Potential Curves and Eigenenergies for Discussion of New
‘Bound States. . '

Each of the sets of eigenfunctions fxga(R), n fixed,
w= 0,1,2,.,.1 1is assumed to provide a complete basis, go that in
“higher levels of approximation where the off-diagonal potentials in
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Eq. (2) are not neglected, each may be expanded in termé of the

X
corresponding set {ng} , fo

R gB(R) . (4)

R) = o
(R) E%BX

These expansions transform the coupled wave equations {2) into a st of
coupled algebraic equations, '

(Y -~ E )C[‘t - > v Cll. | ¢5)
nﬁ o T m_“r nf Sy my
‘where
= Y [kl > :
Vnﬁ' il Xnﬁ vnm | Xm‘y {6)

A svquence of approximations may be defined in which more and moré
terins . are included in the summation in Eq. (5). ‘

At any level of approximation, the solution of the setf of Eqs. (53)
is conveniently discussed in terms of familiar partitioning techaiques
(8). AL the seécond level of approximation, only twd $ets, n = 0 and 1,
sre ineluded in Egs, (5),

Q&

(' = E)C =

o L .
o~ Fu’bos "?,; Vos,is Cus (7a)
1] - C[. = _v (3] -
(B, = EJC ; Viy,08 Son ()

Solving the first equation for Cﬁﬁ and substituting the result into
thie second yields

S0 a v A gy L pY = .
(B, - EC B% Viwn o = EJ7 Yop 15 Cra ¢ . ()

The eigenvalue condition for E, is that the determinant of

coefflicients of the C?Y vanishes, which may be written
: 0 _ Y 0 _ ~i ¥ = ;
dettd, (B, - EB,) [){ Yyy,on B —E)7H Yy 18! ¢ O

and
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E ) = &. (on)

The general properties of the functions Ey(E) are well-known (8).
for & large and negative each E, approaches one of the eigenvalues ETY.
In addition pach E  is a monotonically decreasing function of £ with
poles at the eigenvalues Egﬁ,which in the present application are
closely spaced points on the positive energy axis representing the
continuun of eigenvalues of (TR'*VQO(R)). Hence a graphical solutioen
of Eq. (%) has the qualitative appearance shown in Figure 2

Ex(E)

_ . ‘l‘ll o
. i | By

\?’/.
¥

(N {e.} &

pigure 2. Qualitative behavior of E (). The circles denote points at
which the eigenvalue condition, Eq. (9}, is satisfied,

~ "New" bound states correspond to eigenvalues E, < 0 . It is clear
from Figure 2 that for any finite R .. the number of such states is
given by the number of negative eigenvalues Eu(O); that is, the number
of negative roots of the secular equation,

0 — 0 =
det{GYé(Ely Eu(O)) é vw,OB VOB,I& / EOB} = 0, {(l0a)
Ea(o) < 0. (10h)

These two equations are the general conditions for "new" bound states
to appear at the second level of approximation. 1In principle we should
congider the limit Ryax * © » however, since each eigenvalue E,E) is
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expected o be a decreasing function of R paxe “the number of "new"‘bound_ :

states for a finite Rpy,y is an upper bound to the true number.

Further analysis depends on the particular:nature of.the problem. -
under consideration, as this determines the magnitudes of the matrix
clements appearing in Eq. (10). Previous analysis (2,3,7) has focussed
on problems involving the. Born—Oppenheimer ‘separation and will not be
" repeated here. In the following sectlons, examples: such as arise 'in .
detthlDE problems will be discussed. :

'General qualitative conditions for "new" bound states can be given
from an examination of Eq, (10)., 'Ef the coupling matrices Vi, 0p are
small, it is clear that Ej, must also be small -(i.e. close to ~
Liireshpld). If there are a number of small eigenvalues E)., or if the
coupling elements are large, then there may be a number of "new" bound
states. This apparently does not happen in Born~Oppenheimer problems
(2), but it may in scattering problems. Fimally, if the set of
eigenvalues E ¥ also are a discrete representation of a continuum,
"new" bound states may appear which persist in the limit Riax 7% -

We tiorn now to a discussion of a few examples, Althouph these are
model problems, they exhibit the qualitative behavior found in real
scattering problems.

C. EXAMPLES
a. A Spin Problem
It is instructive to consider first an exactly soluble model.

problem corresponding to the idealized Stern~Gerlach experiment
illugtrated in Figure 3,

Spin. poldrized hJ “ b‘ N
beam of “§ atomsk T . /
. _ .

L +]/y . . . : X :

relative to S I S I

X-uxis

Figure 3. Modified Sternm-Gerlach Experiment. The left magnetic field
is homogeneous, while the second (Stern—Gerlach) field is
inhomogeneous,

A polarized beam of paramagnetic 2§ atoms whose spins are quantized
(m, = +1/2) with respect to the laboratory x-axis enters a region of
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homogeneous magnetic field oriented in the z-direction., With respect
to the z-axis of quantization, the beam contains equal components of «
and § spin. For the d-component, the homogeneous magnetic field
presents a qquare barrier and the scattering of the wave packet will
show reflectlon, transmission, and for certain energies, resonances.
For the transmitted o-component there will be a time-delay which may be
long in the vicinity of resonances. For the B-component, the
homogeneous field presents a square well which may support a number of
bound states, and the transmitted component will be accelerated,
particularly in the vicimity of resonances. Thus, as the beam emerges
from the homogenecus field region, it will have unequal « and P spln
components with respect to the z-axis of quantization, so the
Stern~Gerlach magnet will split the beam into two, with the relative
intensities of the twe beams depending on the kinetic energy of the
beam and the strength of the homogeneous magnetic field.

The guantum mechanical description of this spin scattering _
experlment involves solving the wave equatlon for the stationary state

of the Hamlltonlan for the system in the region of homogeneous magnetic

field.
f = (p%2m) + 288 | an

where the first term is the atomic kinetic emergy and the second the
magnetic interaction of the spin with the homogeneous field. In the
gentral region

B o= B(x)z (12)

where B{x} vanishes except between the pole faces of the central
magnet, where it has a constant value. If the stationary state

eigenfunctions of H are expressed in terms of spin~components quantized

along the x—axis, the wave equation is equivalent to two coupled
equations

.
G- BN = 2B (13a)
N N (13b)
2m i 7 e T )

With this guantization, wu and w may be viewed ag two free parLlcle
stattering states which are coup?ed by a localized interaction AB(x).
The fact that this coupling can give rise to "new” bound and resonance
states is obvious if instead we express the wavefunction in terms of
spin-compenents quantized along the z-axis. Then the two
spin—components are uncoupled and satisfy the equations
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? .
G+ 172 AB(x) - E)¢; 0 (14a)

G - 172 2B(x) - B = 0 (14b)

the solutions of which are discussed in many textbooks (9). The &econd
equation may possess a number of bound states (10) depending on the
strength and width of the magnetic field, while both equations exhibit
resonances for positive energies,

Thus, the existence of "new" bound and resonance states is revealed.
in this spin example by a unitary transformation of the hamiltonian
which diagonalizes the potential matrix, A special feature of this
model is the fact that the unitary transformation commutes with the
kinetic energy operator so that the transformed equations are
completely uncoupled. 1In the general case, the transformed equations,
which exhibit the "new" bound states explicitly, are a better first

“approximation than the or1g1nal set,

b. Atom—D;atomlc Molecule Scattering
A common class of problems where "new" bound states can occur .
involves atom-diatom scattering on. a single Born~Oppenheimer potential

surface. It is conventional in such problems to represent the surface
in terms of Legendre polynomials,

VR,0) = § VR Pleost) . (15)
=t 7 ’ S

where -the variables are defined in Figure 4.

&

Figure 4, Variables for Atom-Diatom Scattering.

The scattering wavefunction is obtained as a solution to a set of
coupled equations of the form of Eq. (2}, where the variables r which
have been averaged correspond to the vibration and rotation of the
diatomic, and the rotation of the triatomic complex as a whole. The
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¢. "New" Resonance States

S0 far we have discussed mainly the appearance of "new" bound
states. We now give a simple example tp show that "“new" resonance
states are expected to accompany the occurrence of "pew" bound states.
Consider the pair of coupled equations

i
o

2
[g—m + VUO(R) - E]XO(R) + VOl(R)Xl(R) (20a),

[Rf

2m

]
=

+ V11 (R) = E]x;(R) + VOJ(R)XO(R) (20b)

where'VUU(R), Yy (R), and ¥, (R) have the qualitative appearance shown
in Figure 5a - T .

igure 5a. Potential Functions appearing in Eq, (20).
These equations may arise, for example, by truncating the equations for
our atom~diatom scattering problem such as was discussed previously.
If we transform the basis, for example by the R~independent
trunsformation,
| T [ _— : p
Xg = )+ x1Y2 (21a)

x| = G - a2 e

then we obtain new potentials
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1] — -—
Voo = M2Wgg + Vyy) = Yy

Vi w20y + Vyg) + g

= 1/2{v,, - V,,)

1
Voi 11

which have the qualitative behavior shown in Figure 5b .
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(22a)
(22nh)

_(22c)

i}
Figure 5b. Transformed Potentlals Resulting from the Transformation

Equ (21)

If the equations are decoupled by neglecting V61, the potential V!
is subsequently
eating van der

can have shdpe resonances which persist even when V'

ineluded. When these equatlons are appropriate for’ Er

1}

Waals molecules, the "new” resonance states are presumnbly associated
with the temporary trapping of the scattering atom in the potent1al

well of the’ dlatomlc.

D. SUHHARY

We have seen that "new" bound and resonance states may arise in a

variety of problems involving sets of coupled wave equations.

The

identification of a state as "new" results from a particular choice of
approx;mate wavefunction, and a "new" state may be transformed into an,
"oxrdinary" one by the proper change of basis. Although "new" states
resylting from deviations from the Born-Opperheimer aeparatlon are
expected to be extremely rare, they may be wmore common in malecular

scattering events,
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