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Abstract We start with a general theoretical introduction to &?.7-symmetric
systems. Quantum systems with gain and loss can be modeled by non-Hermitian
Hamiltonians, and &7 -symmetry is a property that can be achieved, e.g. by a
coupling with the laser field. The resulting &7 -symmetric Hamiltonians possess
a real spectrum (when the gain and loss are not too strong) and can be considered
as a special case of pseudo-Hermitian Hamiltonians. The transition from a real to
a complex spectrum occurs at the exceptional point (EP), where two eigenmodes
coalesce both in eigenvalue and eigenvector. The &?.7 -symmetric Hamiltonian can
be realized experimentally in a system of two coupled waveguides with loss and
gain. We describe in detail two physical effects related to the EPs in such a system.
First, we show that light oscillations between two waveguides are suppressed by
approaching the EP condition. Second, we prove that the group velocity of a light
pulse decreases to zero as the system is tuned to be at the EP.

1 Introduction

Recently there has been an explosion of interest to &2.7 -symmetric properties of
non-Hermitian Hamiltonians, as first introduced by Bender and Boettcher [6]; see
also [5, 14] and references therein. This symmetry is achieved when the parity trans-
formation, &2, interchanges the system elements experiencing gain and loss, such
that the system returns to its original form after the subsequent time reversal, 7.
Under certain conditions & .7 -symmetric Hamiltonians can have a completely real
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spectrum and, thus, can serve, under the appropriate inner product, as Hamiltonians
of unitary quantum systems [28]. We should stress that although we focus on &7 -
symmetric systems, &?.7 symmetry is neither a necessary nor a sufficient condition
for a non-Hermitian Hamiltonian to have a real spectrum [27, 28].

Why are the &7 properties of non-Hermitian Hamiltonians relevant to realistic
physical systems? The realization of 4.7 -symmetric “Hamiltonians” has been
studied most recently for optical waveguides with complex refractive indices [13,
21, 22, 30]. The equivalence of the Maxwell and Schrodinger equations in certain
regimes provides a physical system in which the properties of & .7-symmetric
operators can be studied and exemplified. In this chapter we will focus on the special
effects of exceptional points (EPs) on the dynamical properties of & .7 -symmetric
waveguides with complex index of refraction. The EP is a special type of a non-
Hermitian degeneracy between two (or more) eigenstates formed by the coalescence
of both eigenvalues and eigenvectors.

Quantum mechanics deals with matter waves and the effects of EPs in atomic
and molecular systems have not been observed until now in experiments. Consider
two atomic or molecular resonances, which are coupled by a CW-laser field (i.e.,
AC-electromagnetic field) to have the structure of the non-Hermitian Hamiltonian

A E™ +hop d
Hyy = < ! d EE”)’ (D

where E7¢ and E%* are two complex autoionization or predissociation decay res-
onances; wy, is fundamental frequency of the laser field; the off-diagonal elements
d are proportional to the maximum amplitude of the laser field and describe the
dipole transitions between the two metastable states. The imaginary parts of the
complex eigenvalues E7* and E}* determine the decay rates, which are inversely
proportional to the lifetimes of the corresponding metastable states [25]. In a special
case, when the laser frequency is at the exact resonance

hop = Re (E}* — ET*), 2)
a simple rewrite of the Hamiltonian (1) brings it to the form

. . Ty -
Hyy = Hpg — 171, (3

where [ is a identity operator and

“4)

Hopy = <E0 +il'/2 d )

d  Ey—il)2

with Eg = Re E*, I =Im (E{” — Eg”) and I) = —Im (E{” + Eg”). Here I
features the mean decay rate of both states. Due to Eq. (2), the diagonal elements
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of H 2 have equal real parts and opposite imaginary parts. In this case the
contribution H o7 to the full non-Hermitian Hamiltonian (3) is &7 -symmetric;
see Sect. 2 below. This observation provides a constructive way to design the &2.7
symmetry and EPs in realistic quantum systems.

In Sect. 2, we discuss basic features of &7.7-symmetric and pseudo-Hermitian
Hamiltonians. These Hamiltonians possess real spectrum for the interval of param-
eters bounded by the EPs described in Sect. 3. Section 4 studies light propagation
in a &7 -symmetric system of coupled waveguides. Section 5 investigates the
propagation of light pulses in the same system showing that light stops (the group
velocity vanishes) exactly at the EP.

2 2.7 Symmetry and Pseudo-Hermitian Hamiltonians

A quantum system is described by a Hermitian Hamiltonian Ho. In the absence of
magnetic field, this Hamiltonian is real and symmetric. Evolution of open quantum
systems, when particles can be injected into or removed from the system, can be
modeled by introducing a non-Hermitian part into the Hamiltonian, which describes
the respective gain and loss. This non-Hermitian Hamiltonian part is given by i v,
where V is a real symmetric operator and 7 is the imaginary unit. In general, the
resulting non-Hermitian Hamiltonian H = Hy+iV has complex eigenvalues, £ =
Eo — iI'/2, where the real part is the energy and the imaginary part describes the
rate of decay (I" > 0) or growth (I" < 0) of the respective metastable quantum
state.

The spectrum of a non-Hermitian Hamiltonian may become real in a robust way
when the system possesses an extra symmetry that accurately balances the gain and
loss [6, 7, 21]. This can be understood using the example of a two-level system,
where the first state |1) has energy E( and experiences gain, while the second state
|2) has the same energy E( but decays; the gain and loss having exactly the same
rates. The corresponding Hamiltonian, analogous to (4), can be written as

r_(Eo+il/2  d
H‘( d Eo—iF/Z)’ ©)

where the real parameter d denotes coupling between the two states. Such Hamilto-
nians are called &2 7 -symmetric, because they remain invariant under the combined
action of parity interchanging the two states, |1) < |2), and of time reversal
interchanging the gain with loss, I" < —1I".

Computing eigenvalues and eigenvectors of the matrix (5), we obtain

_ 2_12 = 1
Ei—EOim’ Wi)—(i 1_(1“/2d)2—i11/2d>. ©
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We see that both eigenvalues are real if the intensity of gain and loss is not large,
namely, |I"| < 2d. In this case | £ /1 — (I'/2d)? — iI"/2d| = 1 and, hence, the
eigenvector is equally distributed between the gain |1) and loss |2) states. As a result,
the loss balances gain and the mode amplitude stays constant. Otherwise, if |I"| >
2d, both eigenvalues in (6) are complex: One of the eigenmodes decays and the
other grows with time, because the eigenvectors are not distributed equally between
the gain and loss states. At |I'| = 2d, a non-Hermitian degeneracy is obtained,
the so-called exceptional point, which will be described in the next section in more
detail.

The fact that &2 .7 -symmetric Hamiltonians have a real spectrum follows from a
more general concept of pseudo-Hermitian Hamiltonians [27]. The Hamiltonian H
is called pseudo-Hermitian if there is an invertible Hermitian operator 7 such that

H'h=nH. (7)
Such Hamiltonians are in general non-Hermitian, but they conserve the quantity
() = (YOInIV©), @®)

where W(r) satisfies the Schrodinger equation W = HW. This conservation
property follows from (7) after differentiating (7)) with respect to time.

It is not difficult to see that the property of having a real spectrum is robust under
small perturbations, as long as the Hamiltonian satisfies condition (7) and all its
eigenvalues are non-degenerate. Indeed, let £ be a non-degenerate real eigenvalue
with the right eigenvector |g) and left eigenvector (y |:

HlYg) = ElYr),  (WrlH = E(Yr]. 9)

Note that, for non-Hermitian Hamiltonians, right and left eigenvectors are generally
different, |Yr) # |¥1); here we use the Dirac bra-ket notation and the definition of
bra-states includes the conjugation |y7) = (¥ |T. In the case of a non-degenerate
eigenvalue, the scalar product of left-right eigenvectors is nonzero, (¥ |W¥g) # O,
see e.g. [25, 33]. Using the properties 4T = #, relation (7) written as 4~ 'H =
H 7~ and the second equation in (9), we derive:

bt _ A\ raot\' I\ e
i) = (wel ' AT) = (el ™) = (Eweli™) = B~ ).

(10)
We just have shown that, for any eigenvalue E, the complex conjugate E* is the
eigenvalue with the right eigenvector

lyk) =n"wL). (11)

For a non-degenerate real eigenvalue, we have E = E*, which implies the relation
between the right and left eigenvectors as |Yg) o 7~ !|yr) (equality up to a
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complex factor). Now we can see that a non-degenerate real eigenvalue cannot
become complex under a small perturbation of the Hamiltonian, because otherwise
a real eigenvalue £ would split into a complex conjugate pair E and E*; this is
clearly in the contradiction to the assumption that E is non-degenerate. We see that
the spectrum of the pseudo-Hermitian Hamiltonian remains real with a change of
parameters until the point with a spectral degeneracy. As we will see in the next
section, a typical degeneracy appearing in this case is the EP.
Let us define the parity operator as

s (01
P=<10>, (12)

which interchanges the states |1) and |2) and, thus, its square P2 = [ is the
identity matrix. For the 2 x 2 matrix (5), condition (7) holds for 7 P as
one can easily verify. In this case the conserved quantity (8) becomes () =
©ie2 + @31, where |W (1)) = ¢1(t)|1) + @2(2)|2). Note that () is not positive
definite, thus, its conservation does not necessarily imply that the solution is
bounded. In fact, exponential growing or decaying solutions appear when I" > 2d.
Since the Hamiltonian (5) is complex and symmetric, Egs. (9) for the right and
left eigenvectors are transposed to each other and, hence, the eigenvectors are
complex conjugate, [Y7) = | ). From relation (11) we see that the eigenvector
[VR) = Ply) = 13|1/f;’5) with the eigenvalue E* describe the mode that is &.7 -
symmetric to |Yg) and E.

For a complex symmetric Hamiltonian, let us introduce the c-product of two
vectors Y1 and Y, denoted by (y1]¥2) as [25, Ch. 6 and 9]

I ~>

Wly2) = (Ui 1) 13)

Here the complex conjugation in the first vector implies that (]| = W;")T = |y)T
is only transposed, instead of Hermitian transposed. It is convenient to normalize the
eigenvector of a non-degenerate eigenmode with this c-product as (Yg|¥r) = 1,
which yields the eigenvector |¢r) defined up to a sign; note that this normalization
is not possible for a degenerate eigenvalue, see Sect.3. From the results of the
previous paragraph it follows that the mode with a non-degenerate real eigenvalue
E = E* is &7 -symmetric, with the eigenvector satisfying the relation |Yg) =
:i:13|1p1”5), where the sign distinguishes symmetric and anti-symmetric modes. In
such a case (when the spectrum of the Hamiltonian is real), &.7-symmetry is
called exact. When eigenvalues of the Hamiltonian are complex, 2.7 -symmetry
is broken: each eigenmode with complex E is &?.7-symmetric to the complex
conjugate mode with E*.

Expression (5) provides a subset of all pseudo-Hermitian Hamiltonians for the
choice 7 = P. This is, of course, not the only type of Hamiltonians that possess a
real spectrum. For example, the Hamiltonian
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A —Ey id
H = , d,Ep € R, 14
(id Eo) 0 (14

is pseudo-Hermitian with /) = P’ , where

(10 N
p _<0_1>, (P = 1. (15)

This Hamiltonian is &.7-symmetric with respect to the parity defined by P’
(changing sign of the second state |2)) and the time reversal interchanging the
gain and loss, ig + —ig. At the same time, this Hamiltonian is anti-&.7 -
symmetric with the parity operator (12) interchanging the states |1) and |2). We
refer to [15, 29, 42] for physical applications of anti-£? .7 -symmetric systems.

Furthermore, the relation between 2.7 -symmetric and pseudo-Hermitian
Hamiltonians extends in exactly the same form to multiple-state systems. The
respective Hamiltonians are defined as H = Hy + iV with the real symmetric
matrices (or operators) Hy and V, where Hy describes the Hermitian system and
1% provides the contribution due to gain and loss. The & T -symmetry imposes the
additional conditions that Hy is symmetric and V is anti- symmetric under the parity
transformation P, i.e.,

PHy=HyP, PV =-VP. (16)

Such &7 -symmetric Hamiltonians are also pseudo-Hermitian w1th n= P, since
condition (7) with the complex symmetric operator H = Hy+iV and real operator
P reduces to the (anti-)commutation relations (16).

We stress again that &2.7 -symmetry is only one of many ways to impose a real
spectrum in a structurally stable way. For example, consider H = Hy + iV with
real symmetric operators Ho and V. If Hy is invertible, one can take n = Hp.
Then, condition (7) for the operator H to be pseudo-Hermitian reduces to the
anticommutation relation H()V + VHo =0.

3 Exceptional Point at the Transition from a Real to a
Complex Spectrum

Let us analyze the transition from a real to a complex spectrum for a simple &.7 -
symmetric Hamiltonian (5). Its eigenvalues and eigenvectors are found explicitly in
Eq. (6). Letus denote I'ep = 2d. For I' < ['gp the spectrum is real, while for I" >
I'g p the spectrum is complex. At the transition point I" = I'gp, the two eigenvalues
and two eigenvectors coalesce at E; = E_ = Egp and |Y4) = |¥_) = |VEP),
where
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Exp = Eo, w“w=<i>. (17)
The point with such properties (full coalescence of two eigenmodes both in their
eigenvalues and eigenvectors) is called the exceptional point (EP). At the EP, the
spectrum is incomplete in the sense that the eigenvectors do not constitute a full
basis for the wave function. It is easy to see that the unique eigenvector at the EP is
self-orthogonal with respect to the c-product (13):

(Wepl¥Ep) = 0. (18)

In the language of linear algebra, the EP implies that the canonical Jordal
form of the Hamiltonian contains a Jordan block [33]. The well-known property
of the Jordan block is that its right and left eigenvectors (9) are orthogonal. For
a symmetric Hamiltonian H, this property is equivalent to the c-product self-
orthogonality condition (13) because, at the EP, one has |¥gr) = |¥gp) and
(Wil =lyep)".

The EP plays important role for the representation of spectrum in the form of
Taylor series. Let us rewrite the Hamiltonian (5) in the form

H(\) = Hy+ iV, (19)

where Hy = Eol + dé, and V = 0, with the Pauli matrices 6, and &,. The
factor A = I'/2 describing the gain and loss will be considered as a perturbation
parameter, with A = O corresponding to the Hermitian Hamiltonian H(0) = Hy.
Eigenvalues (6) of the Hamiltonian (19) can be written as

E+(M) = Egp £ /A% — 22, App=1TEp/2=4d. (20)

They are analytic functions of A with the branch point singularities at . = £Agp.
These functions can be expanded in the Taylor series

oo
Ej(0) =Y C{"a, @1
n=0

where j = %. The branch point Agp defines the radius of a circle in the complex
parameter plane, || < Agp, where the Taylor series (21) converges.

In the neighborhood of the EP, dependence of the eigenvalues on a parameter A is
shown in Fig. 1. According to expressions (20), the leading term of this dependence
near Agp can be written as

E+(\) ~ Egp *a\/A — Agp, (22)
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(a)

Re E,

Fig. 1 (a)Real and imaginary parts of eigenvalues E+ from (20) as functions of the real parameter
A; the numerical values are taken as Egp = 1/2 and Agp = 1. Same graphs but as functions of
the complex parameter A are shown for (b) Re E+ with the intersection corresponding to Re A >
Aep, ImA = 0 and (¢) Im E+ with the intersection corresponding to ReA < Agp, ImA = 0. In
horizontal projection, the black line describes the change of A along a cycle around the EP. The
corresponding change of two eigenvalues leading to the switch between two states is shown by the
red and green curves. In one cycle of A, the state E_ (green ball) is transported to the state £ (red
ball), and vice versa

with the purely imaginary prefactor a = i+/2kgp. Thus, the eigenvalues as
functions of the real parameter A have the square root singularity for both real and
imaginary parts at Agp, see Fig. la. When extended to the complex values of A,
the local dependence is described by the two-sheet Riemann surface (branch point
singularity) as shown in Fig. 1b, c.

One of the implications of the branch point singularity in Eq. (22) is that the
two eigenmodes are interchanged when A is changed continuously in the complex
plane around the EP, see Fig. 1b, c. After the second cycle around the EP, the
eigenvalues and eigenvectors return to their original values. This effect is known
as the switch of eigenmodes for the parametric encircling of the EP, and it was
observed experimentally in a microwave system [11]. In this experiment, the switch
characterizes the eigenstates at different time-independent values of A rather than the
evolution of a wavefunction with A changing in time. In fact, this switch mechanism
does not work if the parameter A is changed in time, i.e. for the dynamic encircling
of the EP, because one of the transitions is always broken due to non-adiabatic
effects. Although the adiabatic theorem does not hold, the topological property
of the EP is manifested. When encircling the EP, the transitions acquire a chiral
property: the final state depends on the direction in which the EP is encircled. We
refer to [16, 17, 37] for the theory and physical applications, and to [12, 43] for
the experimental observations of this effect. We stress that the system is not 2.7 -
symmetric for complex values of A. In general, a second-order degeneracy requires
two real parameters in order to satisfy the single complex constraint, E; = E3, at
the EP. However, in £2.7 -symmetric systems, the EP can be found conveniently by
tuning a single parameter, due to the reality of the spectrum below the symmetry-
breaking point.
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The described local properties of the EP extend similarly to systems with more
than two states, when the 3”? -symmetric Hamiltonian has the form (19) with real
symmetric operators Ho and V satisfying the (anti-)symmetry relations (16). In this
case a large variety of spectral singularities may appear, including EPs (branch
points) of higher order and eigenvalue crossings with distinct eigenvectors (so-
called diabolic points); see e.g. [8, 25, 34]. For the higher-order EP, expansions
for eigenvalues and eigenvectors of non-Hermitian Hamiltonians contain fractional
powers like (A — Ag p)'/P (the so-called Puiseux series), where p is the number of
eigenvalues and eigenvectors that coalesce at the EP [25, Sections 7.7 and 9.1.1]; see
also [24, 33] for the general perturbation theory and numerical methods. It should be
stressed, however, that singularities in the spectrum of the generic (typical) &?.7 -
symmetric Hamiltonian with a single real parameter A appear at discrete values,
A= kf P (j =1,2,...), and have the form of the EPs with only two coalescent
eigenvalues and eigenvectors [2]. In this case, the local behavior of eigenvalues and
eigenvectors near the EP is equivalent (and in fact can be reduced) to the case of 2x 2
Hamiltonian studied above. Note that such EPs must exist whenever the matrices I:I()
and V do not commute [26].

Finally, let us describe some properties of the Taylor expansions (21) for the
eigenvalue E; (j = 1,...,n) in the general case of &.7-symmetric Hamiltonian
operator (19). This expansion can be written as

o0
Ejm =) A" o =iy, (23)

where A = iA, H = I:Io + AV, and we redefined the coefficients of (21) to
include powers of the imaginary unit. Let us show that in &2.7 -symmetric systems,
all the odd coefficients vanish and all the even coefficients are real; therefore,
the spectrum is real as long as the series converges. Since Hy and V are real
symmetric matrices, one can use the Hermitian perturbation theory for real A, which
is extended analytically to &2.7 -symmetric Hamiltonians for purely imaginary A.
From this argument, we immediately conclude that all the perturbational coefficients

¢\ are real. Furthermore, from the Wigner (2n + 1)-rule [40] we express the odd-
order coefficients as

P = Vg, (24)

where the real vector |1p](.”)) is the nth-order correction in the expansion for the
eigenvector

W)=Y A"y (25)
n=0

Applying the parity operator to the equality E|v/;) = (Ho + AV) |y j), we obtain
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E Plyj) = P(Hy + AV)|Yj) = (Hy — AV)P|Y;), (26)

where we used the (anti-)symmetry assumptions (16). We see that ﬁ|1p,~> is
the eigenvector corresponding to the parameter value —A. This means that the
coefficients in the expansion (25) for A and — A should match such that

Py ") = £(=1)"ly "), @7

where the first sign depends whether the unperturbed real state |1//j(.0)) (at A = 0)

is Z-symmetric or anti-symmetric (even or odd). Using the relations pP2=17 , (16)
and (27) in (24), we obtain

241 5 P2y P el
(B = ) = B Bl = D )

i.e., all odd-order coefficients cﬁznﬂ) vanish. With this property, we showed

explicitly that the spectrum of the &2.7 -symmetric Hamiltonian H is real as long
as the series (23) is convergent, i.e.

] < min |35 (29)
J

for the minimum among all EPs.

4 .7 —Symmetric System of Coupled Waveguides Near the
EP

We will show in this section that a system of two coupled waveguides (WGs) can
be made &.7 -symmetric if the gain in one WG is accurately balanced by the loss
in the second WG. In this setup, the EP appears for a specific value of the gain-loss
parameter. In our description we follow the theoretical work of one of us together
with Shachar Klaiman and Uwe Giinter [21]. The effects we describe were first
observed in the experiments conducted in the Laboratory of Detlef Kip together with
Mordechai Segev and members of the group of Demetrios N. Christodoulides [31].

A P .7 -symmetric optical system can be easily realized with a symmetric index
guiding profile and an antisymmetric gain and loss profile, i.e., n(x) = n*(—x) [13].
We consider two coupled planar WGs depicted in Fig. 2 for which the refractive
index varies only in the x-direction. The direction of propagation in the WGs is
taken to be the z-axis. The wave equation for the transverse-electric (TE) modes
(derived from the full Maxwell equations) reads [20]:
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Fig. 2 Coupling between the gain guided mode and the loss guided mode provides a &.7-
symmetric system with the refractive index profile such that n(x) = n*(—x). A control parameter
o defines the gain and loss strength in the WGs as Imn = f«/ k. The refractive index only varies
in the x direction

32 2.2

where the y-component of the electric field is given by
Ey(x,z,1) = ¢ (x)e' @ F2. 3D

Here B is the propagation constant and w is the frequency. The vacuum wavelength
is equal to 27/ k with k = w/c. Clearly, the wave equation (30) for the y-component
of the electric field is analogous to the one-dimensional Schrédinger equation:

2

(—%% + V(X)) V(x) = Ed(x), (32)
X

identifying V(x) = —k2n2(x) /2 as the potential, £ = —,32 /2 as the energy, and

Y (x) as the wave function.

As shown in Fig. 2, we couple between one gain-guiding WG (negative imagi-
nary part of the refractive index) and one loss-guiding WG (positive imaginary part
of the refractive index) in order to create the &.7 -symmetric structure [35]. For
simplicity we take the separation between the two coupled WGs to be the same
as the their width, i.e., 2a. Note that in our case the imaginary part of refractive
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index (the complex part of potential) vanishes as x — F00. For propagating modes
(bound states), we impose the boundary conditions ¥ (x) — 0 as x — =£o0.

For the numerical illustration, we choose the following parameters for the WG
structure shown in Fig. 2. The background index is taken to be ng = 3.3, the vacuum
wavelength 27t/ k = 1.55 wm, the real index difference between the WGs and the
background material An = 1073, and the separation between the WGs, which
equals the WGs width, 2a = Spum. The imaginary part of the refractive index in the
WGs is chosen as Imn = £/ k, where « is a parameter. The parameters are chosen
such that each WG contains only a single guided mode before we couple them. The
coupled guided modes are calculated by diagonalizing the matrix representation of
Eq. (30) in a sine basis. The resulting “Hamiltonian” matrix is non-Hermitian and
one needs to take care when normalizing the eigenvectors. We choose to normalize
our eigenvectors according to the c-product (13), i.e., (Vu|¥m) = (¥ |¥m) = Snm-

The coupled waveguides support two guided modes. The propagation constants
of the two modes are plotted in Fig.3 as functions of the gain-loss parameter «.
Increasing o causes the propagation constants of the two modes to move towards
each other and coalesce at app ~ 8.4cm™!. As long as &2.7 symmetry remains
exact, i.e. « < afp, the power of each guided mode is distributed equally between
the two WGs. The critical value agp is the EP, where the two modes coalesce:
both the propagation constants and the corresponding electric fields become equal.
Therefore, one can study the EP in a &2.7 -symmetric WG system by varying only
a single gain-loss parameter «. Past the critical value, « > «afp, the propagation

0.05

0.037

Re[ B - K*nj] [um™]

0.025

Fig. 3 Two trapped modes of the WGs of Fig.2 as functions of the gain-loss parameter «. The
eigenmodes approach each other on the real axis as « increases until a critical value of agp ~
8.4cm™!. The critical value is the EP (branch point), where the two modes coalesce. Beyond the
EP, the directional coupler sustains one gain guiding mode and one loss guiding mode
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Fig. 4 The power distribution for a propagating sum field consisting of the two guided modes,
see Eq. (33) for three values of «. As can be readily observed, the beat length (analogous to the
beat time period in quantum mechanics) increases as the value of o approaches the critical value
app ~ 8.4 cm~!

constants become complex conjugate to each other. Then the WGs support one gain-
guiding mode and one loss-guiding mode. The corresponding transverse field no
longer retains the symmetry properties of the 2.7 operator, but rather each of the
two modes becomes localized in one of the waveguides.

The advance of two real propagation constants towards the EP can be visualized
by observing the beat length of the sum field for two equally populated modes:

1

Ey(x,z,1) = ﬁ

(V1 @2 4 ya(x)e ) . (33)

Figures 4 and 5 display the power distribution |Ey (x, z, 1)|? for three values of «.
One can see that the beat length, which is equal to L = 27 /|8, — B1], increases as
a approaches the EP. At the EP, the sum field no longer oscillates between the two
waveguides but rather travels in both waveguides simultaneously. This fact can be
used for a direct observation of the EP: the propagation constants approach when
the gain-loss parameter « is increased to the value at the EP. Recall that the critical
value o p characterizes the maximum antisymmetric index profile, which can still
be treated within perturbation theory; see Sect. 3.

Although propagation constants of the studied &7 -symmetric WGs are real,
the system is non-Hermitian. This can be most readily observed by looking at the
integrated intensity, ffooo |Ey(x, z) |2dx. This intensity is not conserved as one can
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(a) a=8cm™! < agp () a=9cm™" > agp

’ . 3
a0 2[em]

Fig. 5 3D representation of the power distribution for a propagating sum field (33). (a) The
exact 2.7 symmetry with « = 8cm™! < agp. The light power oscillates, with the beat length
increasing as the system approaches the EP at azp ~ 8.4cm™!. (b) The broken 2.7 symmetry
witha = 9cm™! > agp. The light power increases along the propagation axis, because the signal
occupies primarily the WG with a gain-guiding mode

easily see from Figs. 4 and 5a: the intensity drops almost to zero between oscillations
for « = 8cm™!. In the case of 9.7 -symmetric system, one can find a different
conserved quantity instead of the integrated intensity; see Eq. (8) in Sect. 2. In our
system, this conserved quantity takes the form of the c-product as

o0
/ E;‘(—x, 2)Ey(x, 2)dx = const. (34)

—0oQ

Yet another effect can be observed in the suggested experiment: the maximum
intensity reached by the initially normalized sum field (33) increases as the EP
is approached. This can be understood by observing that as one approaches the
self-orthogonal state the overlap between the two functions comprising the sum
field increases. Finally, Fig.5b gives an insight on the dramatic change of light
propagation when the gain-loss parameter exceeds the EP and the propagation
constant gets a nonzero imaginary part.

It is important to note that the manifestation of &7 symmetry and its resulting
properties is not (theoretically) restricted to optical systems. To date, however,
optical systems seem to be the most readily applicable and &7 symmetry in
optics was quoted among top 10 physics discoveries of the last 10 years by Nature
Physics [10]. One could easily envision a setting using matter waves in which a
condensate is placed in a double well potential, where in one well particles are
injected into the condensate whereas in the second well particles are removed from
the condensate. Here attention should be given to the non-linearity of the Gross-
Pitaevskii equation. In order to keep the dynamics similar to that described in the
optics experiment, the non-linearity should be made small. This can be achieved
either by tuning the interaction between the atoms to zero or by using a very dilute
sample. The experiment would also require accurate and independent control over
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the rates of particles injected or removed from the system. Hopefully, experimental
methods will improve to allow such experiments to be done.

5 Vanishing Group Velocity at the Exceptional Point

In this section, following our work with Tamar Goldzak [18], we extend the study
of ¥ -symmetric WGs to the case of isolated wave pulses. We consider two-
dimensional WGs with the propagation axis z described in the previous section. In
a &7 -symmetric system, the gain and loss are balanced and satisfy the condition
n(x) = n*(—x), where the complex conjugation corresponds to the time reversal
that interchanges the gain and loss. Equation (30) for transverse electric modes (31)
is equivalent to the one-dimensional stationary Schrodinger equation (32) for the
complex (non-Hermitian) potential, and the propagating modes correspond to bound
states [25].

As long as the strength of gain and loss is below a problem dependent critical
value (see Sect. 2), non-decaying modes exist with real propagation constants 8. The
corresponding complex eigenfunctions (by selecting a proper complex pre-factor)
can be taken &7 -symmetric, ¥ (x) = ¥*(—x). Thus, the phase speed of each
mode is defined as v, = w/fB, while the group speed is v, = (dB/dw)~!. For a
nondegenerate bound-state solution, differentiating equation (30) with respect to w
yields

3?2 nPe? L\ Y d(n’w?/c?) 9B
— — — _— =0. 35

<8x2+ c2 ﬂ)8w+< dw Bw)l/j (35)
Following the classical perturbation theory [23, 25], one multiplies this expression
by ¥ (x) and integrates with respect to x. The terms with d1/dw cancel in the
resulting expression after integrating by parts and using (30). The remaining terms
yield expression for the group speed as

B o 2B [yfdx
vg = (df/dw) " = TI0(n20?) Jowly2dx” (36)

By the derivation, this formula takes into account that the index of refraction may
be frequency dependent in general.

The numerator in (36) represents the c-product (13) of the right eigenfunction
[Yg) = ¥(x) with itself. Due to the &7 -symmetry, ¥ (x) = v¥*(—x), the
full integral f Y2dx is real but not necessarily positive. For the same reason, the
denominator is real too. It follows from Eq. (36) that the group speed vanishes if and
only if [ Y2dx = 0, provided that the integral in the denominator is nonzero. The
latter condition is generic and can be easily verified in each specific problem. The c-
product self-orthogonality of the propagating mode is the well-known condition for
the exceptional point (EP); see Eq. (18). At the EP, two propagating modes coalesce
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both in propagation constants § and corresponding functions v (x). This proves that
the group speed in a 2.7 -symmetric WG vanishes at (and only at) an exceptional
point. Such a simple and universal condition provides a link from 2.7 -symmetric
systems to the rapidly developing field of slow light; see [3, 4, 9, 19] for other ways
to stop/slow light such as the electromagnetically induced transparency (EIT).

According to Sect. 3, expansion of eigenvalues near the EP starts with a square
root term

B—BEp X Vo — wEP, 37

which implies that d8/dw = oo and vy = (dB /dw)~! = 0 at the EP. This provides
a simple explanation of our phenomenon, because a steep slope in the dispersion
curve (large derivative df/dw) corresponds to a small group velocity. This argument
relies exclusively on the presence of the EP, with no reference of %27 -symmetry.
The problem is that in conventional systems this effect will also lead to losses. The
balance between gain and loss in a 7.7 symmetric system eliminates this problem:
the light intensity remains constant because the spectrum is real (before reaching the
EP). Also, the real spectrum of the &7 symmetric system simplifies a definition
of the group speed, which is a nontrivial issue for a general system with gain and
loss. The direct link between the EP and zero group speed makes the proposed
effect robust to various imperfections, as the proximity to the EP can be effectively
controlled by tuning two arbitrarily chosen parameters of the system [25, 33]. The
stopping condition is limited to a very well defined EP frequency wg p. Its value can
be effectively controlled by changing the parameters of the index of refraction.

We mention also that the EPs may appear in a different context: at the coalescing
frequencies of Bloch modes for the (time-periodic) Schrédinger equation. Such
EPs can be associated with the infinite group speed in corresponding optical
systems [32]; see [38, 41] for physical interpretation of the superluminal effect.

A specific device with desired properties can be constructed by attaching
layers of materials with different indices of refraction. The refractive index can
be engineered, e.g., via the photorefractive nonlinearity or effective index as in
metamaterials, while the spectrum of gain/loss can be engineered by using quantum
well structures. The &2 .7 -symmetry is achieved if one gain guided mode (negative
Imn) couples with an exactly balanced loss guided mode (positive Imn) [21, 35],
with a profile of the refractive index shown in Fig.2. Note that the standard gain
media are dispersive, i.e., the index of refraction is frequency dependent. This
frequency dependence may break the 2.7 symmetry due to a finite gain bandwidth.

Let us describe the effective light intensities of the two (gain and loss) modes
by two complex variables (¢1, ¢2). Then one obtains a simple model in the form of
2 x 22 .7 -symmetric non-Hermitian system

B —iak 8 o1\ _ 2 (91
( $ ﬁi+i&k><<ﬂ2>_ﬂ <</)2)’ %)
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where the Hamiltonian has the same structure, up to notation, as in Eq. (5). Here
Bw = nyk is the real propagation constant of each separate WG with the effective
index of refraction ny and k = w/c, § describes the coupling, and & = 2n,«
determines the gain in one WG and the loss in the other. The system with no
gain/loss (& = 0) has one symmetric and one antisymmetric mode, with 82 = ,Bi:I:(S
and (¢1, ¢2) = (%1, 1). When gain and loss are taken into account, one finds
B> = B2 + /82 — @2k2. With increasing @, the real propagation constants come
closer and coalesce at the EP given by agp = 8/k. The corresponding two
eigenvectors coalesce too, with the resulting vector (¢1, ¢2) = (1, i) satisfying the
c-product self-orthogonality condition (p12 + (p% =0.

The full-stop of a Gaussian pulse can be accomplished by an adiabatic increase
of the gain-loss parameter to the value &g p, as was also proposed in the context
of photonic-crystal waveguides [36, 44]. Varying the gain-loss parameter in our
non-Hermitian system would be best done via parametric nonlinear gain, which
separates the variation in the gain from affecting the real part of refractive
index, avoiding restrictions imposed by the Kramers—Kronig relations. Nonlinear
parametric interactions operating at ultrafast rates [39] can be engineered using
synchronously-pumped optical parametric oscillators, where the nonlinear medium
is in a cavity and pumped with a pulse at repetition rate matched to cavity, or optical
parametric amplifiers pumped without a cavity by femtosecond pulse. Usually these
utilize x @ crystals, which are commercial technologies. Another choice is x
materials, through non-degenerate four-wave-mixing interactions, where the pumps
serve as gain for the signal beams [1].

Time-dependent solutions for the simplified model (38) can be found using the
system of coupled wave equations

n2 32®; T b 9P,

wZ o T 5dy — =0,

2 912 ¢ ot 972 (39)
n2 32 P BRI

myo ®2  20%2 _ 2 _

2 912 c ot : 972

It is straightforward to check that this system is equivalent to Eq. (38) for a single-
mode solution

(D1, D2) = (g1, 2) P10, (40)

Furthermore, it is easy to see that the model is &Z.7 -symmetric under the transfor-
mation:

Qi(z, 1) > Pa(—z, 1), @r(z,1) = Pi(—z, —1). (4D
System (39) was simulated numerically using the pseudo-spectral method in a large

periodic domain. Initial condition at # = 0 was taken in the form of a Gaussian pulse
corresponding to the antisymmetric mode of the system with no gain and loss,
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_ B2
(1, P2) = (=11 A/CXP (—% + iﬂZ) g, (42)
with mean propagation constant By = 0.8, standard deviation 0 = 0.01 and

arbitrary prefactor A. This value B9 = 0.8 corresponds to the EP at the final
time when agp = 1, see Fig. 6a. In simulations, we used a finite window 0.75 <
B < 0.85 to avoid instabilities, which occur for some propagation constants outside
this interval. In practical applications, such instabilities (if they appear) must be
suppressed for efficient operation of the system.

Numerical simulation of such time-dependent dynamics with the model (39) is
presented in Fig. 6, where a Gaussian pulse is prepared initially in the antisymmetric
mode of the system with no gain and loss. In full agreement with our theoretical pre-
diction, with the increase of the gain-loss parameter in time, the pulse slows down
and stops at the EP (graphs at latest times collapsed to a single curve). A backward
change of the gain-loss parameter brings the signal to its original mobile form.

(a) (b)
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Fig. 6 (a) Adiabatic change of the gain-loss parameter from @ = O at7 = 0 to @gp = 1 at final
time ¢ = 2000/c in a system with representative parameters k = 0.5, n,, = 1.6, and § = 0.5 (arb.
unit). (b) Temporal evolution of the center z. of the Gaussian pulse, stopping when & reaches the
value @gp = 1 at EP. The pulse is prepared initially in anti-symmetric mode of the system with
no gain and loss with the mean propagation number 8 = 0.8 and standard deviation o = 0.01. (c)
Pulse envelope |®| in the first WG at times ¢t = 0, 250, ..., 2000, which correspond to circles
in the upper figures. At the three latest times, the group speed vanishes and the corresponding
graphs collapse to a single curve demonstrating the full-stop of a pulse. A backward change of the
gain-loss parameter brings the optical signal to its original mobile form
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Conclusions based on the effective model (38) are further confirmed by numer-
ical computation for the full Eq.(30). Here the propagation constants f and
eigenfunctions v (x) are calculated numerically for given frequency w by diago-
nalizing the non-Hermitian Hamiltonian in a matrix representation using a particle
in a box basis set. We use specific values of the WG width @ = 1.25 pm and the
same distance between them. The two modes coalesce at the EP for specific values
of k and B in the presence of gain and loss, and one can see from Fig. 7a that the
derivative dB/dk becomes infinite at the EP giving the vanishing group velocity
vg = c(dp /dk)~!. The corresponding self-orthogonal eigenfunction is given in
panel (b).

Finally, Fig. 8 shows the propagation of Gaussian wave packets, comparing the
power spectrum |Ey(x, z, 1)|? at the initial time ¢+ = O vs. the final time of 10
picoseconds. Here the Gaussian solution for a constant gain-loss parameter « is
written as

202

a2
Ey(x.z.0) = A / exp (—M tifz — ia)t) v (x0)dB, 43)
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Fig. 7 (a) The propagation constant 8 as a function of k = w/c for two different values of the
gain-loss parameter: Hermitian system with o« = 0 (dashed black lines: upper symmetric and
lower antisymmetric modes) and non-Hermitian &7 -symmetric system with « = 0.15pum™!
(solid blue line). Two modes of the &7 -symmetric system coalesce at the EP marked with a red
circle. Inset shows enlarged vicinity of the EP at kzp = 0.6414pum~! and Bgp = 0.851 pm~".
The infinite derivative df/dk at the EP yields the vanishing group velocity v, = ¢ (dB /dik)~1. (b)
Real and imaginary parts of the complex eigenfunction for the &2.7-symmetric system at the EP.
This mode satisfies the self-orthogonality condition [ ¥2dx = 0. Colored vertical regions in the
background show positions of the two coupled WGs
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(a) &.7-symmetric system at EP
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Fig. 8 Contour plot of the light power |E\ (x, z, 1)|? for the Gaussian wave packets at the initial
time ¢ = 0 and the final time ¢+ = 10 ps. In both plots the pulse has the mean propagation constant
B = 0.851 um~! with standard deviation o = 0.002 wm~". Grey regions in the background show
positions of the two coupled WGs. (a) Fully stopped pulse centered exactly at the EP in the 2.7 -
symmetric system for @ = 0.15 um~". (b) The antisymmetric mode in the Hermitian case with no
gain and loss (@ = 0). One can see that the pulse is displaced by about 1.4 mm in the Hermitian
case, while it does not move at all when prepared at the EP in the &2.7-symmetric system. (a)
& 7 -symmetric system at EP. (b) Hermitian system: no gain and loss
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where both w and v (x) should be expressed as functions of . Note that the
Gaussian pulse at the EP contains the contributions from both sides of Sgp, which
correspond to two different modes coalescing at the EP in Fig. 7a. In numerical
computations, we used By = 0.851 um’l, o = 0.002 um’l and the overall interval
0.845 < B < 0.857 wm™!. In Fig. 8a, the pulse parameters are chosen exactly at the
EP, while figure (b) corresponds to a similar pulse but for the system far from the EP
(no gain and loss, o = 0). The latter pulse has the large group speed vy /c = 0.47
and the phase speed v,/c = 0.82, demonstrating a considerable displacement of
about 1.4 mm in 10 ps, while the full-stop is confirmed for the pulse designed at the
EP. We used illustrative values of physical parameters in these simulations, which
provide a larger frequency window near the EP than those studied experimentally
in [31]. Note that the dispersion curve in Fig. 7a exhibits a round shape including
also a point with infinite group velocity [38, 41], where df/dk = 0. This point is
outside the operation window for our protocol.

The stopped signal in our system has the phase velocity v,/c = 0.75, which
is only weakly affected as the group velocity is reduced to zero under the EP
mechanism. Furthermore, the phase speed demonstrates a slight decrease compared
to the system with no gain and loss, contrary, e.g., to the well-known relation
vp & 1/v, in special relativity or in optics at the mode-opening.

The major advantages of the proposed protocol is its non-resonant nature, in
which the EP can be adjusted to any frequency by tuning the coupling or gain-
loss parameters. There is also a benefit of using the time-dependent variation of
parameters. In this case an optical pulse is expanded in spatial Fourier modes with
the frequency evolving adiabatically along the real dispersion curve in Fig. 7a. In
this way our protocol avoids the instability related to complex modes at frequencies
above the EP, as confirmed by our numerical tests in Fig. 6.

We see that the full-stop of a light pulse is possible at the exceptional point
in &7 -symmetric coupled waveguides by varying the gain-loss parameter in
time. This allows to “freeze” and then release the light pulse preserving the
carried coherent information. The use of &7 -symmetry has practical advantages
of keeping a constant intensity of propagating modes and providing a robust
protocol that brings the system to the EP. The non-resonant mechanism of the
proposed phenomenon, due to large flexibility of controlling the EP position, is
an important technological advantage, with potential applications for short optical
pulses. Specifically, one can engineer this effect in a 7.7 -symmetric system of two
waveguide channels. This approach is not limited only to light but can be extended,
e.g., to acoustic waves or other fields in physics related to the &2.7 -symmetry.

6 Conclusion

The transition from a real to a complex spectrum of non-Hermitian & .7 -symmetric
Hamiltonians occurs at the exceptional point (EP), where two eigenmodes coalesce
both in eigenvalue and eigenvector. In spite of the fact that EPs are accidental non-
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Hermitian degeneracies they are not rare and not mathematical objects but physical
ones. We have described in detail how light oscillations between two waveguides
are suppressed by approaching the EP condition. We also prove that the group
velocity of a light pulse decreases to zero as the system is tuned to be at the EP and
propose a way how to observe it experimentally. Last but not least, the findings and
conclusions presented in this Chapter are relevant to any two atomic or molecular
metastable states, which are resonantly coupled by a laser field, because their non-
Hermitian Hamiltonian can be simply transformed to have the & .7-symmetric
structure.
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