Category Archives: Books

Group

Our group (current)

Dr. Arik landau alandau@technion.ac.il , Senior Research Associate (Chem.), Research on:

Dr. Debarati Bhattacharya debarati01@gmail.com, Post. Doc. (Chem.), Research on:

Hanna Martiskainen, MSc (Physics) PhD student (Phys.) hanna.martiskainen@gmail.com, Research on:

Anatoli Tsinovoy, MSc student (Phys.)  anatoli.tsinovoy@gmail.com, Research on:

Nitsan Blau <nitsan@campus.technion.ac.il>, BSc student (Math. Phys.), Research on:

Idan Haritan, MSc (Nano technology), PhD students, (Chemistry) idan.haritan@gmail.com , Research on:

Anel Ben-Asher, PhD student (Chem.) anaelba0@gmail.com, Research on:

Gal Bouskila, BSc student (Chem.) galboski@gmail.com, Research on:

Our group (alumni)

GRADUATE STUDENTS

Nuphar Lipkin (Chemistry), PhD in 1992,  Thesis:  Investigation of resonance states by the complex coordinate method.

Nir Ben-Tal (Chemistry), PhD in 1992, Thesis:Non-linear dynamics of time independent and temporally periodic systems.

Uri Peskin (Chemistry), PhD in 1993, Thesis:Resonances, transition probabilities and partial widths by the complex coordinate method.

Naomi Rom (Chemistry), PhD in 1995, Thesis:Determination of tunneling rates through potential barriers

Ilya Vorobechik (Chemistry) , PhD in 1999, Thesis: Study of electro-magnetic wave propagation in optical devices by quantum mechanical methods.

Ofir Alon (Physics-Chemistry), MSc in 1994, Thesis:  Partial widths and coherent control of chemical reactions by the time dependent gauge transformations  , PhD in 2001, Thesis: Selection rues for the high harmonic generation spectra by the dynamical symmetry analysis.

Vitali Averbukh (Chemistry), PhD in 2001, Thesis: Multiphoton processes induced by high intensity fields.

Alexander Kenis (Physics), PhD in 2002, Thesis on: Design of optical devices by means of quantum mechanical approaches and computational methods.

Hadas Barkay (Chemistry), MSc in 2002, Thesis: Resonant tunneling phenomena in multi-dimensional systems.

Ido Gilary (Chemistry), MSc in 2003, Thesis: Photo-induced dynamikcs of driven systems in the high frequency regime, PhD in 2007, Thesis: Dynamics of wavepackets in non-hermitian quantum mechanics.

Edvardas Narevicius (Chemistry), PhD in 2002, Thesis: Non-hermitian quantum mechanics: fingerprints of overlapping resonances in observable quantities.

Shmuel Osovski (Chemistry), MSc in 2006, Thesis on: Fingerprints of classical chaos in manipulation of cold atoms in one-dimensional optical lattices.

Avner Fleischer (Chemistry), PhD in 2007, Thesis on: High harmonic generation from atoms subjected to two-color laser field.

Yoav Berlatzky (Physics), PhD in 2007, Thesis on: Scattering from non-continuous 2D potentials: Theory and applications.

Shachar Klaiman (chemistry), PhD in 2010, Thesis on: Resonances in mesoscopic systems.

Ira Cherkes (Nano-sciences), MSc in 2010,  Thesis: Electron relaxation in quantum dots by the Interatomic coulombic decay Mechanism.

Raam Uzdin (Physics), PhD in 2012, Thesis on: The effects of non-hermitian degeneracies on light and matter interactions.

Tamar Goldzak, (Nano-sciences) PhD in 2017, Thesis on: Interatomic coulombic decay in quantum wells.

POST DOCTORAL FELLOWS & RESEARCH ASSOCIATES

Ashish Gupta, 2003-2007, HGS for graphite and QDs; trapping molecules by light.

Y. Sajeev, 2006-2009, Autoionization of atom and molecules and quantum dots by reflection free CAPS.

Balanarayan Pananghat, 2010-2013, Molecular chemistry in strong laser fields.

Ido Gilary, 2008-2016 (senior research associate from 2011), Non-hermitian QM: formalism of partial widths and applications.

Petra Ruth Zdanska-Kapralova, 2003-2006, HGS for Benzene and He using  time-dependent non-hermitian (NH)-TDSE; NH adiabatic formalism for antiproton collisions.

Milan Sindelka, 2006-2012 (Senior research associate since 2010), Light matter dipole and quadruple interactions and LICI (light/laser induced  conical intersection)

Mariusz Pawlak, 2014-2015,  LICI effect on localization of molecules in optical lattices.

 

Home

nm-portrat

Prof. Nimrod Moiseyev

Schulich Faculty of Chemistry & Faculty of Physics & Solid State Institute
Chemistry Building, Room 422 (entrance level)
Technion-Israel Institute of Technology
32000, Haifa, Israel

Phone: +972-4-829-3977
Fax: +972-4-829-3541

mail: nimrod@technion.ac.il

 

 

OUR GROUP (current)

Dr. Arik landau alandau@technion.ac.il , Senior Research Associate (Chem.), Research on:

Dr. Debarati Bhattacharya debarati01@gmail.com, Post. Doc. (Chem.), Research on:

Hanna Martiskainen, MSc (Physics) PhD student (Phys.) hanna.martiskainen@gmail.com, Research on:

Anatoli Tsinovoy, MSc student (Phys.)  anatoli.tsinovoy@gmail.com, Research on:

Nitsan Blau <nitsan@campus.technion.ac.il>, BSc student (Math. Phys.), Research on:

Idan Haritan, MSc (Nano technology), PhD students, (Chemistry) idan.haritan@gmail.com , Research on:

Anel Ben-Asher, PhD student (Chem.) anaelba0@gmail.com, Research on:

Gal Bouskila, BSc student (Chem.) galboski@gmail.com, Research on:

 

Quantum Mechanics: From Foundations to Applications (Hebrew-2 volumes)

הספר מתמקד ביישומים של התאוריה הכללית לבעיות מעשיות בתחומי הפיזיקה, הכימיה ומדעי הננו. הוא פונה אל מגוון תלמידים וקהלים במדעים, מתחילים ומתקדמים, תאורטיקאים וניסיונאים. יעד זה מושג על ידי הצגת כל נושא בכמה רמות קושי: רמה בסיסית, שבה נדונים רעיונות ותפיסות בצירוף פרטים מתמטיים מינימליים, ובנפרד, ורמות מתקדמות שבהן ניתנים פרטים מתמטיים ברמה גבוהה. בספר דוגמאות רבות והרבה מאוד תרגילים. אפילו באנגלית קשה למצוא ספר דומה לו מבחינת רוחב ועומק היריעה

 מתוך חוות דעת של פרופ’ רועי בר, ראש מרכז פריץ הבר לדינמיקה מולקולרית באוניברסיטה העברית

הספר מחולק לשני כרכים. הכרך הראשון מתמקד ביסודות ובדיון בבעיות הניתנות לפתרון באופן אנליטי. הכרך השני מתמקד בבעיות שלא ניתן לפתור אותם באופן אנליטי מדויק ודורשות פיתוח של שיטות פתרון מקורבות שלעתים קרובות משמשות בסיס לפתרון נומרי בעזרת מחשב. בשני הכרכים למעלה ממאה תרגילים פתורים בדרגות קושי שונות המסיעיים להבהרת מכניקת הקוונטים ושימושיה.

NHQM-non hermitian quantum mechanics

Non-Hermitian quantum mechanics (NHQM) is an important alternative to the standard (Hermitian) formalism of quantum mechanics, enabling the solution of otherwise difficult problems. The first book to present this theory, it is useful to advanced graduate students and researchers in physics, chemistry and engineering. NHQM provides powerful numerical and analytical tools for the study of resonance phenomena – perhaps one of the most striking events in nature. It is especially useful for problems whose solutions cause extreme difficulties within the structure of a conventional Hermitian framework. NHQM has applications in a variety of fields, including optics, where the refractive index is complex; quantum field theory, where the parity-time (PT) symmetry properties of the Hamiltonian are investigated; and atomic and molecular physics and electrical engineering, where complex potentials are introduced to simplify numerical calculations.

• The first book to present NHQM as an important alternative to the standard formalism of quantum mechanics • Explores the use of NHQM in the study of resonance phenomena – perhaps one of the most striking events in nature • Has applications in a variety of fields, including optics, quantum field theory, and atomic and molecular physics as well as electrical engineering

Contents

1. Different formulations of quantum mechanics; 2. Resonance phenomena in nature; 3. Resonances from Hermitian quantum mechanics calculations; 4. Resonances from non-Hermitian quantum mechanics calculations; 5. Square integrable resonance wavefunctions; 6. Bi-orthogonal product (C-product); 7. The properties of the non-Hermitian Hamiltonian; 8. Non-Hermitian scattering theory; 9. The self-orthogonality phenomenon; 10. The point where quantum mechanics branches into two formalisms; Index.

Reviews

‘… Professor Nimrod Moiseyev, one of the pioneers in [the] field, does a beautiful job detailing the mathematical underpinnings and describing a myriad of applications ranging from atomic and molecular physics, molecular spectroscopy, chemical reaction dynamics, and electromagnetic wave propagation. Throughout … one finds numerous exercises whose solutions (also provided in good detail) offer the reader much additional insight into both the mathematical intricacies of non-Hermitian quantum theory and its connections to experimental laboratory observations. At the end of each chapter, Moiseyev provides further reading references organized to make connections to the topics covered in the respective chapter and includes references from very diverse sciences. Seldom does one find a book that can be used as a student text for a graduate-level class and that treats its topic at a cutting-edge research level. Professor Moiseyev has produced such a gem in this case!’ Jack Simons, University of Utah

‘A unique, timely and comprehensive collection of material relating to the quantum physics and chemistry of resonance and absorption, combining mathematical principles, numerics, applications and solved exercises, representing a lifetime of research by the author and his collaborators.’ Michael Berry, University of Bristol