Foundations of NHQM

Link to Full List Of Publications

Foundations of Non Hermitian Quantum Mechanics

  • MoiseyevN., Certain, P., & Weinhold, F. (1978). Resonance properties of complex-rotated hamiltonians. Mol. Phys.36(6), 1613–1630. doi: View Article [c-product, c-variational theory, c-hyper virial theorem]
  • MoiseyevN., & Certain, P. (1979). Perturbation approach to the complex-rotation method. Mol. Phys.37(5), 1621–1632. doi: View Article
  • MoiseyevN., & Corcoran, C. (1979). Autoionizing states of Hand H2− using the complex-scaling method. Phys. Rev. A20(3), 814–817. doi: 10.1103/PhysRevA.20.814 [resonances by analytical continuation of Hamiltonian matrix elements to the complex plane rather than operators]
  • MoiseyevN., & Weinhold, F. (1979). Electron-correlation effects in the positions and widths of 2-electron auto-ionizing resonances. Phys. Rev. A20(1), 27–31. doi: View Article

 

  • MoiseyevN., & Friedland, S. (1980). Association of resonance states with the incomplete spectrum of finite complex-scaled hamiltonian matrices. Phys. Rev. A22(2), 618–624. doi: View Article  [first association of EP (branch point in the spectrum ) with resonances by complex scaling]

 

  • MoiseyevN. (1981). Virial-theorem for bound and resonance states as a special case of the scattering virial-theorem. Phys. Rev. A24(5), 2824–2825. doi: View Article

 

  • MoiseyevN., Friedland, S., & Certain, P. (1981). Cusps, theta-trajectories, and the complex virial-theorem. J. Chem. Phys.74(8), 4739–4740. doi:View Article [first association of resonances with cusps in trajectory plots of complex energies]

 

  • MoiseyevN. (1981a). Studies of multi-channel resonances by the complex scaling method. Mol. Phys.42(1), 129–139. doi: View Article
  • MoiseyevN. (1982). Resonance states by the generalized complex variational method. Mol. Phys.47(3), 585–598. doi: View Article

 

  • MoiseyevN. (1983). Resonance by the complex coordinate method with Hermitian hamiltonian. Chem. Phys. Lett.99(4), 364–367. doi: View Article  [first Hermitian representation of non-hermitian TISE]

 

  • MoiseyevN., & Hirschfelder, J. (1988). Representation of several complex coordinate methods by similarity transformation operators. J. Chem. Phys.88(2), 1063–1065. doi: View Article [formal ground to large number if not all computational algorithms for calculating resonances by complex scaling]

 

  • MoiseyevN., & Peskin, U. (1990). Partial widths obtained by the complex resonance-scattering theory. Phys. Rev. A42(1), 255–260. doi: View Article

 

  • Bental, N., MoiseyevN., Leforestier, C., & Kosloff, R. (1991). Positions, lifetimes, and partial widths of metastable quasi-energy states by solving the time-dependent complex-scaled Schrodinger-equation. J. Chem. Phys.94(11), 7311–7318.doi: View Article

 

  • Peskin, U., & MoiseyevN. (1992). The complex coordinate scattering theory and the Kohn variational method: A general formulation and application to long range potentials. J. Chem. Phys.97(9), 6443–6450. doi: View Article

 

  • Rom, N., Ryaboy, V., & MoiseyevN. (1993). Cumulative reaction probability by the complex coordinate scattering-theory. J. Chem. Phys.98(8), 6327–6331.doi: View Article

 

  • Vorobeichik, I., & MoiseyevN. (1998). State-to-state transition probabilities for time-dependent hamiltonians using complex absorbing potentials. J. Phys. B-At. Mol. Opt. Phys.31(4), 645–656. doi: View Article

 

  • MoiseyevN. (1998). Derivations of universal exact complex absorption potentials by the generalized complex coordinate method. J. Phys. B-At. Mol. Opt. Phys.31(7), 1431–1441. doi: View Article

 

  • MoiseyevN., & Cederbaum, L. (1999). Suppression of electron correlation and of autoionization by strong laser fields. J. Phys. B-At. Mol. Opt. Phys.32(12), L279–L284. doi: View Article

 

  • Vorobeichik, I., & MoiseyevN. (1999). Revealing broad overlapping resonances by strong laser fields. Phys. Rev. A59(2), 1699–1702. doi: View Article

 

  • Narevicius, E., & MoiseyevN. (2000). Non-hermitian formulation of interference effect in scattering experiments. J. Chem. Phys.113(15), 6088–6095. doi: View Article

 

  • MoiseyevN., & Lein, M. (2003). Non-hermitian quantum mechanics for high-order harmonic generation spectra. J. Phys. Chem. A107(37), 7181–7188.doi: View Article

 

  • Fleischer, a., & MoiseyevN. (2005). Adiabatic theorem for non-hermitian time-dependent open systems. Phys. Rev. A72(3). doi: View Article

 

  • MoiseyevN. (2009). Feshbach resonances: The branching of quantum mechanics into hermitian and non-hermitian formalisms. J. Phys. Chem. A113(26), 7660–7666. doi: View Article

  • Gilary, I., Fleischer, a., & MoiseyevN. (2005). Calculations of time-dependent observables in non-hermitian quantum mechanics: The problem and a possible solution. Phys. Rev. A72(1, A-B). doi: View Article

 

  • MoiseyevN. (2017). Forces on nuclei moving on autoionizing molecular potential energy surfaces. J. Chem. Phys.146(2). doi: View Article

 

  • Pick, A., Kapralova-zd’anska, P. R., & MoiseyevN. (2019). Ab-initio theory of photoionization via resonances. J. Chem. Phys.150(20). doi: View Article

 

  • Ben-asher, A., Simsa, D., Uhlirov, T., Sindelka, M., & MoiseyevN. (2020). Laser control of resonance tunneling via an exceptional point. Phys. Rev. Lett.124(25). doi: View Article

BOOK [first ever written on NHQM] : 

  • Moiseyev, N. (2011). Non-Hermitian quantum mechanics. Cambridge University Press doi: View Article.

 

  • Monograph:  MoiseyevN. (1998). Quantum theory of resonances: Calculating energies, widths and cross-sections by complex scaling. Phys. Rep.-Rev. Sec. Phys. Lett.302(5-6), 212–293.

 

REVIEWS:

  • Narevicius, E., & Moiseyev, N. (2003). Non-Hermitian Quantum Mechanics: Theory and Experiments Not Amenable to Conventional QM. In Advanced Topics in Theoretical Chemical Physics (pp. 311-338). Springer, Dordrecht.

 

  • Moiseyev, N. (1995). Time-Independent Scattering Theory for General Time-Dependent Hamiltonians. Comments on Atomic and Molecular Physics, 31(2), 87-108.

 

  • MoiseyevN., & Korsch, H. (1990). Resonance positions and widths for time-periodic hamiltonians by the complex coordinate method. Isr. J. Chem.30(1-2), 107–114.